scholarly journals Phytochemical Screening and Cytotoxic Properties of Ethanolic Extract of Young and Mature Khat Leaves

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Rashad Alsanosy ◽  
Hassan A. Alhazmi ◽  
Shahnaz Sultana ◽  
Ashraf N. Abdalla ◽  
Yassin Ibrahim ◽  
...  

The khat plant has been culturally used in many parts of Africa and the Arabian Peninsula for many years to induce psycho-stimulating effect. Because of the global wide-spreading nature, khat chewing is being considered as a universally growing problem. Catha abbottii, Catha edulis, and Catha transvaalensis are the three species of khat commonly chewed in Saudi Arabia and nearby regions. Khat users usually prefer to chew young leaves over mature ones due to the diverse effects produced by both. Though many of the constituents of khat leaves have been identified, the complete phytochemical profile of young and mature leaves was not performed or compared; also, no evidence is available to affirm the cytotoxicity of young or mature leaves. Therefore, this study aimed to investigate the phytochemical basis of the differential response of the young and mature leaves and to assess the cytotoxicity of young and mature khat leaves. Ethanolic extracts of young and mature leaves of three khat cultivars were subjected to GC-MS. Hierarchical cluster analysis revealed the existence of two major clusters. The extracts of young leaves were found to contain the maximum content of cathinone; however, methoxyamphetamine was found in only one extract of young leaves. Cytotoxicity investigations were also conducted on both types of leaves using three cancer cell lines, human breast adenocarcinoma, human ovary adenocarcinoma, and human colon adenocarcinoma and also normal human fetal lung fibroblast cell line was used. All extracts showed comparable cytotoxicity, IC50 ranging from 22–59 μg/mL on the cancer cells; however, we observed more cytotoxicity against normal cells (IC50: 6–41 μg/mL). The predominant cytotoxicity on normal cells may pose many health hazards to khat consumers.

Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1175 ◽  
Author(s):  
Aliya El Newahie ◽  
Yassin Nissan ◽  
Nasser Ismail ◽  
Dalal Abou El Ella ◽  
Sohair Khojah ◽  
...  

The quinoxaline scaffold is a promising platform for the discovery of active chemotherapeutic agents. Three series of quinoxaline derivatives were synthesized and biologically evaluated against three tumor cell lines (HCT116 human colon carcinoma, HepG2, liver hepatocellular carcinoma and MCF-7, human breast adenocarcinoma cell line), in addition to VEGFR-2 enzyme inhibition activity. Compounds VIId, VIIIa, VIIIc, VIIIe and XVa exhibited promising activity against the tested cell lines and weak activity against VEGFR-2. Compound VIIIc induced a significant disruption in the cell cycle profile and cell cycle arrest at the G2/M phase boundary. In further assays, the cytotoxic effect of the highly active compounds was determined using a normal Caucasian fibroblast-like fetal lung cell line (WI-38). Compound VIIIc could be considered as a lead compound that merits further optimization and development as an anti-cancer and an apoptotic inducing candidate against the HCT116 cell line.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Seham S. El-Hawary ◽  
Rabab Mohammed ◽  
Ahmed F. Tawfike ◽  
Nadia M. Lithy ◽  
Sameh Fekry AbouZid ◽  
...  

Euphorbia is a large genus of flowering plants with a great diversity in metabolic pattern. Testing the cytotoxic potential of fifteen Euphorbia species revealed highest activity of E. officinarum L. against human colon adenocarcinoma (CACO2) cell line (IC50 7.2 µM) and of E. lactea Haw. against human hepatoma (HepG2) and human breast adenocarcinoma (MCF-7) cell lines (IC50 5.2 and 5.1 µM, respectively). Additionally, metabolic profiling of the fifteen tested species, using LC-HRMS, for dereplication purposes, led to the annotation of 44 natural compounds. Among the annotated compounds, diterpenoids represent the major class. Dereplication approach and multivariate data analysis are adopted in order to annotate the compounds responsible for the detected cytotoxic activity. Results of Principle component analysis (PCA) come in a great accordance with results of biological testing, which emphasized the cytotoxic properties of E. lactea Haw. A similarity correlation network showed that the two compounds with the molecular formula C16H18O8 and C20H30O10, are responsible for cytotoxic activity against MCF-7 and HepG2 cell lines. Similarly, the compound with molecular formula C18H35NO correlates with cytotoxic activity against CACO2.


2021 ◽  
Vol 22 (14) ◽  
pp. 7422
Author(s):  
Alice De Palo ◽  
Dijana Draca ◽  
Maria Grazia Murrali ◽  
Stefano Zacchini ◽  
Guido Pampaloni ◽  
...  

Piano-stool iridium complexes based on the pentamethylcyclopentadienyl ligand (Cp*) have been intensively investigated as anticancer drug candidates and hold much promise in this setting. A systematic study aimed at outlining the effect of Cp* mono-derivatization on the antiproliferative activity is presented here. Thus, the dinuclear complexes [Ir(η5-C5Me4R)Cl(μ-Cl)]2 (R = Me, 1a; R = H, 1b; R = Pr, 1c; R = 4-C6H4F, 1d; R = 4-C6H4OH, 1e), their 2-phenylpyridyl mononuclear derivatives [Ir(η5-C5Me4R)(kN,kCPhPy)Cl] (2a–d), and the dimethylsulfoxide complex [Ir{h5-C5Me4(4-C6H4OH)}Cl2(κS-Me2S=O)] (3) were synthesized, structurally characterized, and assessed for their cytotoxicity towards a panel of six human and rodent cancer cell lines (mouse melanoma, B16; rat glioma, C6; breast adenocarcinoma, MCF-7; colorectal carcinoma, SW620 and HCT116; ovarian carcinoma, A2780) and one primary, human fetal lung fibroblast cell line (MRC5). Complexes 2b (R = H) and 2d (4-C6H4F) emerged as the most active ones and were selected for further investigation. They did not affect the viability of primary mouse peritoneal cells, and their tumoricidal action arises from the combined influence on cellular proliferation, apoptosis and senescence. The latter is triggered by mitochondrial failure and production of reactive oxygen and nitrogen species.


2019 ◽  
Vol 15 (4) ◽  
pp. 417-429 ◽  
Author(s):  
Dima A. Sabbah ◽  
Ameerah H. Ibrahim ◽  
Wamidh H. Talib ◽  
Khalid M. Alqaisi ◽  
Kamal Sweidan ◽  
...  

Background: Phosphoinositide 3-kinase α (PI3Kα) has emerged as a promising target for anticancer drug design. Objectives: Target compounds were designed to investigate the effect of the p-OCH3 motifs on ligand/PI3Kα complex interaction and antiproliferative activity. Methods: Synthesis of the proposed compounds, biological examination tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, along with Glide docking studies. Results: A series of 1,2-bis(4-methoxyphenyl)-2-oxoethyl benzoates was synthesized and characterized by means of FT-IR, 1H and 13C NMR, and by elemental analysis. Biological investigation demonstrated that the newly synthesized compounds exhibit antiproliferative activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines possibly via inhibition of PI3Kα and estrogen receptor alpha (ERα). Additionally, results revealed that these compounds exert selective inhibitory activity, induce apoptosis, and suppress VEGF production. Compound 3c exhibited promising antiproliferative activity in HCT-116 interrogating that hydrogen bond-acceptor mediates ligand/PI3Kα complex formation on m- position. Compounds 3e and 3i displayed high inhibitory activity in MCF-7 and T47D implying a wide cleft discloses the o-attachment. Furthermore, compound 3g exerted selective inhibitory activity against T47D. Glide docking studies against PI3Kα and ERα demonstrated that the series accommodate binding to PI3Kα and/or ERα. Conclusion: The series exhibited a potential antitumor activity in human carcinoma cell lines encoding PI3Kα and/or ERα.


1999 ◽  
Vol 38 (04) ◽  
pp. 115-119
Author(s):  
N. Oriuchi ◽  
S. Sugiyama ◽  
M. Kuroki ◽  
Y. Matsuoka ◽  
S. Tanada ◽  
...  

Summary Aim: The purpose of this study was to assess the potential for radioimmunodetection (RAID) of murine anti-carcinoembryonic antigen (CEA) monoclonal antibody (MAb) F33-104 labeled with technetium-99m (99m-Tc) by a reduction-mediated labeling method. Methods: The binding capacity of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA by means of in vitro procedures such as immunoradiometric assay and cell binding assay and the biodistribution of 99m-Tc-labeled anti-CEA MAb F33-104 in normal nude mice and nude mice bearing human colon adenocarcinoma LS180 tumor were investigated and compared with 99m-Tc-labeled anti-CEA MAb BW431/26. Results: The in vitro binding rate of 99m-Tc-labeled anti-CEA MAb F33-104 with CEA in solution and attached to the cell membrane was significantly higher than 99m-Tclabeled anti-CEA MAb BW431/261 (31.4 ± 0.95% vs. 11.9 ± 0.55% at 100 ng/mL of soluble CEA, 83.5 ± 2.84% vs. 54.0 ± 2.54% at 107 of LS 180 cells). In vivo, accumulation of 99m-Tc-labeled anti-CEA MAb F33-104 was higher at 18 h postinjection than 99m-Tc-labeled anti-CEA MAb BW431/26 (20.1 ± 3.50% ID/g vs. 14.4 ± 3.30% ID/g). 99m-Tcactivity in the kidneys of nude mice bearing tumor was higher at 18 h postinjection than at 3 h (12.8 ± 2.10% ID/g vs. 8.01 ± 2.40% ID/g of 99m-Tc-labeled anti-CEA MAb F33-104, 10.7 ± 1.70% ID/g vs. 8.10 ± 1.75% ID/g of 99m-Tc-labeled anti-CEA MAb BW431/26). Conclusion: 99m-Tc-labeled anti-CEA MAb F33-104 is a potential novel agent for RAID of recurrent colorectal cancer.


Agrotek ◽  
2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Antonius Suparno ◽  
Opalina Logo ◽  
Dwiana Wasgito Purnomo

Sweet potato serves as a staple food for people in Jayawijaya. Many cultivars of sweet potatoes have been cultivated by Dani tribe in Kurulu as foot for their infant, child and adult as well as feeding especially for pigs. Base on the used of sweet potatoes as food source for infant and child, this study explored 10 different cultivars. As for the leaf morphology, it was indentified that the mature leaves have size around 15 � 18 cm. general outline of the leaf is reniform (40%), 60% have green colour leaf, 50% without leaf lobe, 60% of leaf lobes number is one, 70% of shape of central leaf lobe is toothed. Abazial leaf vein pigmentation have purple (40%), and petiole pigmentation is purple with green near leaf (60%), besides its tuber roots, sweet potatoes are also harvested for its shoots and green young leaves for vegetables.


2018 ◽  
Vol 18 (8) ◽  
pp. 1184-1196 ◽  
Author(s):  
Abdel-Ghany A. El-Helby ◽  
Helmy Sakr ◽  
Rezk R.A. Ayyad ◽  
Khaled El-Adl ◽  
Mamdouh M. Ali ◽  
...  

Background: Extensive studies were reported in the synthesis of several phthalazine derivatives as promising anticancer agents as potent VEGFR-2 inhibitors. Vatalanib (PTK787) was the first anilinophthalazine published derivative as a potent inhibitor of VEGFR. The discovery of vatalanib as a clinical candidate led to the design and synthesis of different anilinophthalazine derivatives as potent inhibitors for VEGFR-2. The objective of present research work is the synthesis of new agents with the same essential pharmacophoric features of the reported and clinically used VEGFR-2 inhibitors (e.g vatalanib and sorafenib). The main core of our molecular design rationale comprised bioisosteric modification strategies of VEGFR-2 inhibitors at four different positions. </P><P> Material and Methods: A correlation between structure and biological activity of our designed phthalazines was established using molecular docking and VEGFR-2 kinase assay. Results and Discussion: In view of their expected anticancer activity, novel triazolo[3,4-a]phthalazine derivatives 5-6a-o and 3-substituted-bis([1,2,4]triazolo)[3,4-a:4',3'-c]phthalazines 9a-b were designed, synthesized and evaluated for their anti-proliferative activity against two human tumor cell lines HCT-116 human colon adenocarcinoma and MCF-7 breast cancer. It was found that, compound 6o the most potent derivative against both HCT116 and MCF-7 cancer cell lines. Compounds 6o, 6m, 6d and 9b showed the highest anticancer activities against HCT116 human colon adenocarcinoma with IC50 of 7±0.06, 13±0.11, 15±0.14 and 23±0.22 µM respectively while compounds 6o, 6d, 6a and 6n showed the highest anticancer activities against MCF-7 breast cancer with IC50 of 16.98±0.15, 18.2±0.17, 57.54±0.53 and 66.45±0.67 µM respectively. Sorafenib as a highly potent VEGFR-2 inhibitor was used as a reference drug with IC50 of 5.47±0.3 and 7.26±0.3 µM respectively. Nine compounds were further evaluated for their VEGFR-2 inhibitory activity. Compounds 6o, 6m, 6d and 9b emerged as the most active counterparts against VEGFR-2 with IC50 values of 0.1±0.01, 0.15±0.02, 0.28±0.03 and 0.38±0.04 µM, respectively comparable to that of sorafenib (IC50 = 0.1±0.02) µM. Furthermore, molecular docking studies were carried out for all synthesized compounds to investigate their binding pattern and predict their binding affinities towards VEGFR-2 active site. In silico ADMET studies were calculated for the tested compounds. Most of our designed compounds exhibited good ADMET profile. Conclusion: The obtained results showed that, the most active compounds could be useful as a template for future design, optimization, adaptation and investigation to produce more potent and selective VEGFR-2 inhibitors with higher anticancer analogs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


Sign in / Sign up

Export Citation Format

Share Document