scholarly journals Magnesium Lithospermate B Downregulates the Levels of Blood Pressure, Inflammation, and Oxidative Stress in Pregnant Rats with Hypertension

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Kaixiang Xu ◽  
Xiaohong Zang ◽  
Mian Peng ◽  
Qian Zhao ◽  
Binbin Lin

Background. Magnesium lithospermate B (MLB) was shown to suppress oxidative stress and reduce hypertension, but the role of MLB in pregnancy-induced hypertension (PIH) remains unknown. The objective of this study was to demonstrate the effects of MLB on rats with PIH. Methods. A total of 40 pregnant SD rats were selected, and 30 rats were orally given NG-nitro-L-arginine methyl ester (L-NAME, 60 mg/kg/day) to establish PIH rat models. Rats were equally divided into four groups: control, PIH, 5 mg/kg MLB, and 10 mg/kg MLB. MLB was consecutively administered into PIH rats for one week. The effects of MLB on mean arterial blood pressure (MAP), urine protein level, inflammation, and oxidative stress together with angiogenesis were analyzed. Results. MLB prevented the elevation in MAP and urine protein levels induced by L-NAME. The activities of inflammatory cytokines were highly increased in serum and placental tissues of PIH rats, while cotreatment with MLB partially reversed the activities of these cytokines. MLB also recovered the expression of reactive oxygen species (ROS) in plasma of PIH rats together with levels of oxidative stress and antioxidant capacity in the placenta of PIH rats. The decreased expressions of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), and NO observed in PIH rats were increased by MLB. In addition, 10 mg/kg MLB exhibited higher protective effects as compared to lower doses of 5 mg/kg. Conclusion. This study demonstrated that pretreatment with MLB decreased MAP, inflammation, and oxidative stress in rats with gestational hypertension.

2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Naphatsanan Duansak ◽  
Pritsana Piyabhan ◽  
Umarat Srisawat ◽  
Jarinyaporn Naowaboot ◽  
Nusiri Lerdvuthisopon ◽  
...  

Background. Inflammation and hypertension are primary mechanisms involving in obesity-associated adverse effects of a high-fat diet. The aim of this study was to evaluate the effects of rice bran extract (RBE) on arterial blood pressure, hepatic steatosis, inflammation, and oxidative stress in high-fat diet (HFD)-induced obese mice. Methods. Male ICR mice were divided into four groups, including a normal-diet control group, a high-fat diet (HFD) (60% kcal from fat) group, an HFD group treated with RBE (220 mg/kg/day), and an HFD group treated with 1100 mg/kg/day for eight weeks. Besides body weight and arterial blood pressure, we determined liver values of total cholesterol, triglyceride, as well as percent body fat, tumor necrosis factor-α (TNF-α), malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), matrix metalloprotease-9 (MMP-9), cyclooxygenase-2 (COX-2), and mRNA endothelial nitric oxide synthase (eNOS). Results. The HFD group had increased body weight, increased systolic and diastolic blood pressure, liver total cholesterol, triglyceride, NF-κB, COX-2 and MMP-9 protein levels, and decreased mRNA eNOS in the aorta. Mice of the HFD group receiving RBE had reduced diastolic blood pressure, as well as significantly decreased liver and serum TNF-α and MDA levels in the liver, and reduced NF-κB levels in both the liver and heart. Conclusions. These results demonstrate that RBE decreases diastolic blood pressure, the liver lipid droplet accumulation, liver and myocardial NF-κB, myocardial COX-2 and MMP-9 protein levels, and oxidative stress. Moreover, RBE may improve endothelial function and may alleviate adverse health effects associated with obesity including obesity-associated hypertension.


2007 ◽  
Vol 293 (4) ◽  
pp. R1657-R1665 ◽  
Author(s):  
Annie Beauséjour ◽  
Véronique Houde ◽  
Karine Bibeau ◽  
Rébecca Gaudet ◽  
Jean St-Louis ◽  
...  

Sodium supplementation given for 1 wk to nonpregnant rats induces changes that are adequate to maintain renal and circulatory homeostasis as well as arterial blood pressure. However, in pregnant rats, proteinuria, fetal growth restriction, and placental oxidative stress are observed. Moreover, the decrease in blood pressure and expansion of circulatory volume, normally associated with pregnancy, are prevented by high-sodium intake. We hypothesized that, in these pregnant rats, a loss of the balance between prooxidation and antioxidation, particularly in kidneys and heart, disturbs the normal course of pregnancy and leads to manifestations such as gestational hypertension. We thus investigated the presence of oxidative/nitrosative stress in heart and kidneys following high-sodium intake in pregnant rats. Markers of this stress [8-isoprostaglandin F2α (8-iso-PGF2α) and nitrotyrosine], producer of nitric oxide [nitric oxide synthases (NOSs)], and antioxidants [superoxide dismutase (SOD) and catalase] were measured. Then, molecules (Na+-K+-ATPase and aconitase) or process [apoptosis (Bax and Bcl-2), inflammation (monocyte chemoattractant protein-1, connective tissue growth factor, and TNF-α)] susceptible to free radicals was determined. In kidneys from pregnant rats on 1.8% NaCl-water, NOSs, apoptotic index, and nitrotyrosine expression were increased, whereas Na+-K+-ATPase mRNA and activity were decreased. In the left cardiac ventricle of these rats, heightened nitrotyrosine, 8-iso-PGF2α, and catalase activity together with reduced endothelial NOS protein expression and SOD and aconitase activities were observed. These findings suggest that oxidative/nitrosative stress in kidney and left cardiac ventricle destabilizes the normal course of pregnancy and could lead to gestational hypertension.


2016 ◽  
Vol 23 (19) ◽  
pp. 19551-19560 ◽  
Author(s):  
Mahin Dianat ◽  
Esmat Radmanesh ◽  
Mohammad Badavi ◽  
Gholamreza Goudarzi ◽  
Seyyed Ali Mard

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Rong Wang ◽  
Yongzheng Luo ◽  
Yadong Lu ◽  
Daojuan Wang ◽  
Tingyu Wang ◽  
...  

Ulcerative colitis (UC) is a common chronic remitting disease driven through altered immune responses with production of inflammatory cytokines. Oxidant/antioxidant balance is also suggested to be an important factor for the recurrence and progression of UC. Maggots are known as a traditional Chinese medicine also known as “wu gu chong.” NF-E2-related factor-2 (Nrf2) transcription factor regulates the oxidative stress response and also represses inflammation. The aim of this study was to investigate the effects of maggot extracts on the amelioration of inflammation and oxidative stress in a mouse model of dextran sulfate sodium- (DSS-) induced colitis and evaluate if the maggot extracts could repress inflammation and oxidative stress using RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). In the present study, we found that the maggot extracts significantly prevented the loss of body weight and shortening of colon length in UC induced by DSS. Furthermore, DSS-induced expression of proinflammatory cytokines at both mRNA and protein levels in the colon was also attenuated by the maggot extracts. In addition, the maggot extracts could significantly suppress the expression of interleukin- (IL-) 1β, IL-6, TNF-α, NFκB p65, p-IκB, p22-phox, and gp91-phox in LPS-stimulated RAW 264.7 cells and colonic tissues. The maggot extracts increased the level of Nrf2 and prevented the degradation of Nrf2 through downregulating the expression of Keap1, which resulted in augmented levels of HO-1, SOD, and GSH-Px and reduced levels of MPO and MDA. However, after administering an Nrf2 inhibitor (ML385) to block the Nrf2/HO-1 pathway, we failed to observe the protective effects of the maggot extracts in mice with colitis and RAW 264.7 cells. Taken together, our data for the first time confirmed that the maggot extracts ameliorated inflammation and oxidative stress in experimental colitis via modulation of the Nrf2/HO-1 pathway. This study sheds light on the possible development of an effective therapeutic strategy for inflammatory bowel diseases.


2019 ◽  
Author(s):  
Guoqing Chen ◽  
Ying Lin ◽  
Lu Chen ◽  
Fa Zeng ◽  
Li Zhang ◽  
...  

Abstract Background: Preeclampsia (PE) is a pregnancy complication that is diagnosed by the new onset of hypertension and proteinuria. Although the pathogenesis of PE is still not fully understood, growing evidence indicates that oxidative stress and mitochondrial dysfunction may contribute to the progression of PE. Therefore, we aimed to determine the role of mitophagy in mitochondrial dysfunction and oxidative stress in PE. Moreover, we aimed to evaluate the role of DNA damage-regulated autophagy modulator 1 (DRAM1) in the development of PE. Results: In this study, we first constructed a mouse model of PE induced by Hif-1α and found a high level of oxidative stress, apoptosis and mitochondrial dysfunction in the placentas of PE mice. Additionally, the activity of mitophagy was decreased, and the level of DRAM1 was significantly decreased in the placentas of PE mice. To further explore the role of DRAM1 in mitophagy, DRAM1 was overexpressed in the placental tissues of PE mice. It was found that the overexpression of DRAM1 effectively improved the symptoms of PE mice and that blood lipid and urine protein levels were significantly reduced. Furthermore, DRAM1 overexpression also improved mitochondrial function and reduced oxidative stress in the placentas of PE mice. In addition, it improved mitochondrial fusion and fission and enhanced mitophagy.Conclusions: our results indicate a key role of DRAM1 in mitophagy in contributing to the regulation of PE. To our knowledge, this is the first study to confirm the role of DRAM1 in PE, and the study provides a new understanding of the pathophysiological mechanisms of PE.


2020 ◽  
Vol 25 (4) ◽  
pp. 295-301 ◽  
Author(s):  
Junfang Zuo ◽  
Ziyun Jiang

Preeclampsia is a life-threatening multiorgan systemic disease with manifestations including gestational hypertension, oxidative stress, and vascular dysfunction. We aimed to evaluate the therapeutic effects of melatonin on an L-NAME (NLG-nitro-l-arginine methyl ester)-induced rat preeclampsia model. During gestation, L-NAME was added to drinking water at 50 mg/kg/day from gestation day (GD) 8. Rats received the combination of L-NAME with melatonin (10 mg/kg/day), or aspirin (1.5 mg/kg/day), and rats that received only L-NAME or no treatments were used as controls. Aspirin was mixed with rodent chow and melatonin was administered intraperitoneally. Blood pressure and urine protein content were monitored every 3 days. On GD19, blood samples were collected for biochemical analysis. Compared to untreated L-NAME rats, melatonin led to markedly lowered blood pressure and urine protein content, and recovery in the fetus alive ratio, fetal weight, and the fetal weight/placental weight ratio. Compared to untreated L-NAME rats, plasma antioxidant capacity and plasma malondialdehyde were increased and decreased by melatonin, respectively, in L-NAME rats. Melatonin treatment also reduced sFlt-1, increased PlGF, and decreased the sFlt-1/PlGF ratio. In the placenta, melatonin also reduced sFlt-1 levels and increased Nrf2, PlGF, and HO-1 levels. We have demonstrated in a rat model of preeclampsia that melatonin exerts significant protective effects through lowering blood pressure and reducing oxidative stress.


2020 ◽  
Vol 21 (8) ◽  
pp. 626-632 ◽  
Author(s):  
Dawei Liu ◽  
Qinghua Wu ◽  
Hongyi Liu ◽  
Changhu Lu ◽  
Chao Gu ◽  
...  

Background: The red-crowned crane (Grus japonensis) is one of the most vulnerable bird species in the world. Mycotoxins are toxic secondary metabolites produced by fungi and considered naturally unavoidable contaminants in animal feed. Our recent survey indicated that the mycotoxins had the potential to contaminate redcrowned crane’s regular diets in China. Objective: This experiment was conducted to investigate the protective effects of mycotoxin binder montmorillonite (Mont) on growth performance, serum biochemistry and oxidative stress parameters of the red-crowned crane. Methods: 16 red-crowned cranes were divided into four groups and fed one of the following diets; a selected diet, regular diet, or the selected diet or regular diet with 0.5% montmorillonite added to the diets. The cranes' parameters of performance, hematology, serum biochemistry and serum oxidative stress were measured. Results: Consuming regular diets decreased the average daily feed intake (ADFI), levels of haemoglobin (Hb), platelet count (PLT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT), but increased the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK) and lactate dehydrogenase (LDH). The supplementation of 0.5% Mont provided protection for the red-crowned crane in terms of feed intake, serum biochemistry and oxidative stress. Moreover, Mont supplementation had no adverse effect on the health of red-crowned crane. Conclusions: Taken together, these findings suggested that the addition of dietary Mont is effective in improving the health of red-crowned crane.


Diabetes Care ◽  
2011 ◽  
Vol 34 (9) ◽  
pp. 1946-1948 ◽  
Author(s):  
Carlo Clerici ◽  
Elisabetta Nardi ◽  
Pier Maria Battezzati ◽  
Stefania Asciutti ◽  
Danilo Castellani ◽  
...  

Pharmacology ◽  
2021 ◽  
pp. 1-11
Author(s):  
Naseratun Nessa ◽  
Miyuki Kobara ◽  
Hiroe Toba ◽  
Tetsuya Adachi ◽  
Toshiro Yamamoto ◽  
...  

Introduction: Periodontitis is a lifestyle-related disease that is characterized by chronic inflammation in gingival tissue. Febuxostat, a xanthine oxidase inhibitor, exerts anti-inflammatory and antioxidant effects. Objective: The present study investigated the effects of febuxostat on periodontitis in a rat model. Methods: Male Wistar rats were divided into 3 groups: control, periodontitis, and febuxostat-treated periodontitis groups. Periodontitis was induced by placing a ligature wire around the 2nd maxillary molar and the administration of febuxostat (5 mg/kg/day) was then initiated. After 4 weeks, alveolar bone loss was assessed by micro-computed tomography and methylene blue staining. The expression of osteoprotegerin (OPG), a bone resorption inhibitor, was detected by quantitative RT-PCR and immunological staining, and the number of osteoclasts in gingival tissue was assessed by tartrate-resistant acid phosphatase staining. The mRNA and protein expression levels of the proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β), in gingival tissue were measured using quantitative RT-PCR and immunological staining. Oxidative stress in gingival tissue was evaluated by the expression of 4-hydroxy-2-nonenal (4-HNE), and 8-hydroxy-2-deoxyguanosine (8-OHdG). To clarify the systemic effects of periodontitis, blood pressure and glucose tolerance were examined. Results: In rats with periodontitis, alveolar bone resorption was associated with reductions in OPG and increases in osteoclast numbers. The gingival expression of TNF-α, IL-1β, 4-HNE, and 8-OHdG was up-regulated in rats with periodontitis. Febuxostat significantly reduced alveolar bone loss, proinflammatory cytokine levels, and oxidative stress. It also attenuated periodontitis-induced glucose intolerance and blood pressure elevations. Conclusion: Febuxostat prevented the progression of periodontitis and associated systemic effects by inhibiting proinflammatory mediators and oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document