scholarly journals Glucagon-Like Peptide-2 Analogue ZP1849 Augments Colonic Anastomotic Wound Healing

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Marie Kjaer ◽  
Wayne Russell ◽  
Peter Schjerling ◽  
Elena Cottarelli ◽  
Kennet N. Christjansen ◽  
...  

Background. The enteroendocrine hormone glucagon-like peptide- (GLP-) 2 is a potent trophic factor in the gastrointestinal tract. The GLP-2 receptor (GLP-2R) is expressed in the stroma of the large bowel wall, which is the major therapeutic target area to prevent anastomotic leakage. We investigated the efficacy of the long-acting GLP-2 analogue ZP1849 on colonic anastomotic wound healing. Methods. Eighty-seven male Wistar rats were stratified into four groups and received daily treatment with vehicle or ZP1849 starting one day before (day -1) end-to-end anastomosis was constructed in the left colon on day 0, and on days 0 (resected colon segment), 3, and 5, gene expressions of GLP-2R, Ki67, insulin-like growth factor- (IGF-) 1, type I (COL1A1) and type III (COL3A1) procollagens, cyclooxygenase- (COX-) 1, COX-2, and matrix metalloproteinase- (MMP-) 7 were quantified by RT-qPCR. Breaking strength, myeloperoxidase (MPO), transforming growth factor- (TGF-) β1, and soluble collagen proteins were measured on days 3 and 5. Results. ZP1849 treatment increased Ki67 (P<0.0001) and IGF-1 (P<0.05) mRNA levels in noninjured colon day 0, and postoperatively in the anastomotic wounds compared to vehicle-treated rats. ZP1849-treated rats had increased (P=0.042) anastomotic breaking strength at day 5 compared with vehicle. COL1A1 and COL3A1 mRNA levels (P<0.0001) and soluble collagen proteins (P<0.05) increased from day 3 to day 5 in ZP1849-treated rats, but not in vehicle-treated rats. COX-2 mRNA and MPO protein levels decreased from day 3 to day 5 (P<0.001) in both groups. ZP1849 treatment reduced TGF-β1 protein levels on day 5 (P<0.001) but did not impact MMP-7 transcription. Conclusions. The GLP-2 analogue ZP1849 increased breaking strength, IGF-1 expression, and cell proliferation, which may be beneficial for colonic anastomotic wound healing.

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Heather A. Redstone ◽  
William D. Buie ◽  
David A. Hart ◽  
Laurie Wallace ◽  
Pamela J. Hornby ◽  
...  

Background. Glucagon-like peptide 2 (GLP-2) is an intestinal specific trophic hormone, with therapeutic potential; the effects on intestinal healing are unknown. We used a rat model of colonic healing, under normoxic, and stress (hypoxic) conditions to examine the effect of GLP-2 on intestinal healing.Methods. Following colonic transection and reanastomosis, animals were randomized to one of six groups (n=8/group): controls, native GLP-2, long-acting GLP-2 (GLP-2- MIMETIBODY, GLP-2-MMB), animals were housed under normoxic or hypoxic (11%  O2) conditions. Animals were studied five days post-operation for anastomotic strength and wound characteristics.Results. Anastomotic bursting pressure was unchanged by GLP-2 or GLP-2-MMB in normoxic or hypoxic animals; both treatments increased crypt cell proliferation. Wound IL-1βincreased with GLP-2; IFNγwith GLP-2 and GLP-2-MMB. IL-10 and TGF-βwere decreased; Type I collagen mRNA expression increased in hypoxic animals while Type III collagen was reduced with both GLP-2 agonists. GLP-2 MMB, but not native GLP-2 increased TIMP 1-3 mRNA levels in hypoxia.Conclusions. The effects on CCP, cytokines and wound healing were similar for both GLP-2 agonists under normoxic and hypoxic conditions; anastomotic strength was not affected. This suggests that GLP-2 (or agonists) could be safely used peri-operatively; direct studies will be required.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Shuo Qiu ◽  
Yachao Jia ◽  
Yunchu Sun ◽  
Pei Han ◽  
Jia Xu ◽  
...  

Aims. The purpose of the present research is to investigate the effects of the VHL protein antagonist, VH298, on functional activities of fibroblasts and vascular endothelial cells and the effects on the wound healing process in a streptozotocin-induced hyperglycaemic rat model. Methods. HIF-1α and hydroxy-HIF-1α protein levels in VH298-treated rat fibroblasts (rFb) were measured by immunoblotting, rFb proliferation was detected by the CCK-8 assay, and mRNA levels of related genes were measured by quantitative RT-PCR. In vitro wound healing was simulated by the scratch test; angiogenesis was measured by the human umbilical vein endothelial cell (hUVEC) tube formation assay. VH298 or PBS was locally injected into wounds in rat models with streptozotocin- (STZ-) induced hyperglycaemia, the wound tissues were harvested, and haematoxylin-eosin (HE) and Masson trichrome staining and immunohistochemical processes were conducted. Results. HIF-1α and hydroxy-HIF-1α levels increased in VH298-treated rFb, in a time- and dose-dependent manner. Thirty micromolar VH298 could significantly increase cell proliferation, angiogenesis, and gene expression of type I collagen-α1 (Col1-α1), vascular endothelial growth factor A (VEGF-A), and insulin-like growth factor 1 (IGF-1). The VH298-treated wound had a better healing pattern, activation of HIF-1 signalling, and vascularization. Conclusions. Taken together, VH298 activated the HIF-1 signalling pathway by stabilizing both HIF-1α and hydroxy-HIF-1α. VH298 enhanced rFb functions, promoted hUVEC angiogenesis, and accelerated wound healing in the rat model mimicking diabetes mellitus.


2021 ◽  
Vol 12 ◽  
pp. 204173142199975
Author(s):  
Jihyun Kim ◽  
Kyoung-Mi Lee ◽  
Seung Hwan Han ◽  
Eun Ae Ko ◽  
Dong Suk Yoon ◽  
...  

Patients with diabetes experience impaired growth factor production such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF), and they are reportedly involved in wound healing processes. Here, we report dual growth factor-loaded hyaluronate collagen dressing (Dual-HCD) matrix, using different ratios of the concentration of stabilized growth factors—stabilized-EGF (S-EGF) and stabilized-bFGF (S-bFGF). At first, the optimal concentration ratio of S-EGF to S-bFGF in the Dual-HCD matrix is determined to be 1:2 in type I diabetic mice. This Dual-HCD matrix does not cause cytotoxicity and can be used in vivo. The wound-healing effect of this matrix is confirmed in type II diabetic mice. Dual HCD enhances angiogenesis which promotes wound healing and thus, it shows a significantly greater synergistic effect than the HCD matrix loaded with a single growth factor. Overall, we conclude that the Dual-HCD matrix represents an effective therapeutic agent for impaired diabetic wound healing.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Hee-Soo Han ◽  
Eungyeong Jang ◽  
Ji-Sun Shin ◽  
Kyung-Soo Inn ◽  
Jang-Hoon Lee ◽  
...  

Medicinal plants have been used as alternative therapeutic tools to alleviate inflammatory diseases. The objective of this study was to evaluate anti-inflammatory properties of Kyungheechunggan-tang- (KCT-) 01, KCT-02, and Injinchunggan-tang (IJCGT) as newly developed decoctions containing 3–11 herbs in LPS-induced macrophages. KCT-01 showed the most potent inhibitory effects on LPS-induced NO, PGE2, TNF-α, and IL-6 production among those three herbal formulas. In addition, KCT-01 significantly inhibited LPS-induced iNOS and COX-2 at protein levels and expression of iNOS, COX-2, TNF-α, and IL-6 at mRNA levels. Molecular data revealed that KCT-01 attenuated the activation of JAK/STAT signaling cascade without affecting NF-κB or AP-1 activation. In ear inflammation induced by croton oil, KCT-01 significantly reduced edema, MPO activity, expression levels of iNOS and COX-2, and STAT3 phosphorylation in ear tissues. Taken together, our findings suggest that KCT-01 can downregulate the expression of proinflammatory genes by inhibiting JAK/STAT signaling pathway under inflammatory conditions. This study provides useful data for further exploration and application of KCT-01 as a potential anti-inflammatory medicine.


Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Kevin Morine ◽  
Vikram Paruchuri ◽  
Xiaoying Qiao ◽  
Emily Mackey ◽  
Mark Aronovitz ◽  
...  

Introduction: Activin receptor like kinase 1 (ALK1) mediates signaling via transforming growth factor beta-1 (TGFb1), a pro-fibrogenic cytokine. No studies have defined a role for ALK1 in heart failure. We tested the hypothesis that reduced ALK1 expression promotes maladaptive cardiac remodeling in heart failure. Methods and Results: ALK1 mRNA expression was quantified by RT-PCR in left ventricular (LV) tissue from patients with end-stage heart failure and compared to control LV tissue obtained from the National Disease Research Interchange (n=8/group). Compared to controls, LV ALK1 mRNA levels were reduced by 85% in patients with heart failure. Next, using an siRNA approach, we tested whether reduced ALK1 levels promote TGFb1-mediated collagen production in human cardiac fibroblasts. Treatment with an ALK1 siRNA reduced ALK1 mRNA levels by 75%. Compared to control, TGFb1-mediated Type I collagen and pSmad-3 protein levels were 2.5-fold and 1.7-fold higher, respectively, after ALK1 depletion. To explore a role for ALK1 in heart failure, ALK1 haploinsufficient (ALK1) and wild-type mice (WT; n=8/group) were studied 2 weeks after thoracic aortic constriction (TAC). Compared to WT, baseline LV ALK1 mRNA levels were 50% lower in ALK1 mice. Both LV and lung weights were higher in ALK1 mice after TAC. Cardiomyocyte area and LV mRNA levels of BNP, RCAN, and b-MHC were increased similarly, while SERCa levels were reduced in both ALK1 and WT mice after TAC. Compared to WT, LV fibrosis (Figure) and Type 1 Collagen mRNA and protein levels were higher among ALK1 mice. Compared to WT, LV fractional shortening (48±12 vs 26±10%, p=0.01) and survival (Figure) were lower in ALK1 mice after TAC. Conclusions: Reduced LV expression of ALK1 is associated with advanced heart failure in humans and promotes early mortality, impaired LV function, and cardiac fibrosis in a murine model of heart failure. Further studies examining the role of ALK1 and ALK1 inhibitors on cardiac remodeling are required.


1998 ◽  
Vol 85 (1) ◽  
pp. 139-147 ◽  
Author(s):  
Yasuhiro Kumei ◽  
Hitoyata Shimokawa ◽  
Hisako Katano ◽  
Hideo Akiyama ◽  
Masahiko Hirano ◽  
...  

Rat osteoblasts were cultured for 4 or 5 days during a Space Shuttle mission. After 20-h treatment with 1α,25-dihydroxyvitamin D3, conditioned media were harvested and cellular DNA and/or RNA were fixed on board. The insulin-like growth factor binding protein (IGF BP)-3 levels in the media were three- and tenfold higher than in ground controls on the fourth and fifth flight days, as quantitated by Western ligand blotting and radioimmunoassay, respectively. The increased IGF BP-3 protein levels correlated with two- to threefold elevation of IGF BP-3 mRNA levels, obtained by reverse transcription-polymerase chain reaction. The IGF BP-5 mRNA levels in flight cultures were 33–69% lower than in ground controls. The IGF BP-4 mRNA levels in flight cultures were 75% lower than in ground controls on the fifth day but were not different on the fourth day. The glucocorticoid receptor mRNA levels in flight cultures were increased by three- to eightfold on the fourth and fifth days compared with levels in ground controls. These data suggest potential mechanisms underlying spaceflight-induced osteopenia.


2013 ◽  
Vol 27 (12) ◽  
pp. 2093-2104 ◽  
Author(s):  
Hsun-Ming Chang ◽  
Jung-Chien Cheng ◽  
Christian Klausen ◽  
Peter C. K. Leung

In addition to somatic cell-derived growth factors, oocyte-derived growth differentiation factor (GDF)9 and bone morphogenetic protein (BMP)15 play essential roles in female fertility. However, few studies have investigated their effects on human ovarian steroidogenesis, and fewer still have examined their differential effects or underlying molecular determinants. In the present study, we used immortalized human granulosa cells (SVOG) and human granulosa cell tumor cells (KGN) to compare the effects of GDF9 and BMP15 on steroidogenic enzyme expression and investigate potential mechanisms of action. In SVOG cells, neither GDF9 nor BMP15 affects the mRNA levels of P450 side-chain cleavage enzyme or 3β-hydroxysteroid dehydrogenase. However, treatment with BMP15, but not GDF9, significantly decreases steroidogenic acute regulatory protein (StAR) mRNA and protein levels as well as progesterone production. These suppressive effects, along with the induction of Sma and Mad-related protein (SMAD)1/5/8 phosphorylation, are attenuated by cotreatment with 2 different BMP type I receptor inhibitors (dorsomorphin and DMH-1). Furthermore, depletion of activin receptor-like kinase (ALK)3 using small interfering RNA reverses the effects of BMP15 on SMAD1/5/8 phosphorylation and StAR expression. Similarly, knockdown of ALK3 abolishes BMP15-induced SMAD1/5/8 phosphorylation in KGN cells. These results provide evidence that oocyte-derived BMP15 down-regulates StAR expression and decreases progesterone production in human granulosa cells, likely via ALK3-mediated SMAD1/5/8 signaling. Our findings suggest that oocyte may play a critical role in the regulation of progesterone to prevent premature luteinization during the late stage of follicle development.


2016 ◽  
Vol 40 (1-2) ◽  
pp. 207-218 ◽  
Author(s):  
Zhaohua Jiang ◽  
Qingxiong Yu ◽  
Lingling Xia ◽  
Yi Zhang ◽  
Xiuxia Wang ◽  
...  

Background: Keloids are fibroproliferative scars that develop as a result of a dysregulated wound healing process; however, the molecular mechanisms of keloid pathogenesis remain unclear. Keloids are characterized by the ability to spread beyond the original boundary of the wound, and they represent a significant clinical challenge. Previous work from our group suggested that growth differentiation factor (GDF)-9 plays a role in the invasive behavior of keloids. Here, we examined the involvement of GDF-9 in keloid formation and spread and elucidated a potential underlying mechanism. Methods: The expression of GDF-9, cyclooxygenase (COX)-2, vascular epidermal growth factor (VEGF)-C, matrix metalloprotease (MMP)-2, MMP-9, transforming growth factor (TGF)-β1, and the related signaling pathway components in human keloid tissues or keloid fibroblasts (kFBs) was monitored by qRT-PCR and western blot. A series of overexpression and silencing experiments in normal and keloid fibroblasts were used to modify the expression of GDF-9. The effects of GDF-9 on kFB proliferation and migration were assessed using the CCK-8, cell cycle and scratch wound healing assays. Results: GDF-9 promotes fibroblast proliferation and migration. GDF-9 silencing in kFBs decreased cell proliferation, blocked cell cycle progression, downregulated the angiogenic markers COX-2 and VEGF-C, and downregulated MMP-2 and MMP-9 expression, whereas it had no effect on the levels of TGF-β1. GDF-9 silencing significantly inhibited Smad2 and Smad3 phosphorylation in kFBs. Conclusions: GDF-9 promotes the proliferation and migration of kFBs via a mechanism involving the Smad2/3 pathway.


1999 ◽  
Vol 276 (4) ◽  
pp. R1164-R1171 ◽  
Author(s):  
K. M. Kelley ◽  
T. R. Johnson ◽  
J. Ilan ◽  
R. W. Moskowitz

Nonresponsiveness to the growth-stimulatory actions of insulin-like growth factor (IGF)-I in chondrocytes has been reported in a number of disease states associated with impaired glucose metabolism. Primary rabbit chondrocytes were investigated for changes in their IGF response system [type-I IGF receptor and IGF-binding protein (IGFBP) expression] and in their ability to mount a synthetic response to IGF-I [as35S-labeled proteoglycan ([35S]PG) production] in media containing varying ambient glucose concentrations. Whereas basal [35S]PG synthetic rate was unaffected by glucose concentration, synthetic responsiveness to IGF-I was lost in media containing <5 mmol/l glucose or in media containing a “diabetic” glucose concentration (25 mmol/l). IGFBP expression, as measured by Northern analysis of mRNA levels and Western ligand blotting of secreted protein levels, was not significantly altered in the different glucose media, nor were there any differences in the cell surface localization of IGFBPs as assessed by affinity cross-linking with 125I-labeled IGF-I, suggesting that IGFBPs do not induce the IGF-I resistance. The nonresponsiveness to IGF-I in reduced glucose occurred with 25–50% reductions in steady-state levels of IGF type-I receptor mRNA and protein. A significant correlation between IGF receptor mRNA level and synthetic response to IGF-I was observed between 0 and 10 mmol/l glucose concentrations, suggesting that the loss of responsiveness in reduced glucose is manifested at the level of transcription and/or receptor mRNA stability. In contrast, nonresponsiveness to IGF-I in chondrocytes in diabetic glucose concentrations occurred without changes in receptor mRNA and protein levels, suggesting that IGF-I resistance was due to post-ligand-binding receptor defects. It is proposed that IGF-I resistance in chondrocytes subjected to inappropriate glucose levels may constitute an important pathogenic mechanism in degenerative cartilage disorders.


1999 ◽  
Vol 146 (4) ◽  
pp. 881-892 ◽  
Author(s):  
David C. Martin ◽  
John L. Fowlkes ◽  
Bojana Babic ◽  
Rama Khokha

Insulin-like growth factor (IGF) II is overexpressed in many human cancers and is reactivated by, and crucial for viral oncogene (SV40 T antigen, [TAg])–induced tumorigenesis in several tumor models. Using a double transgenic murine hepatic tumor model, we demonstrate that tissue inhibitor of metalloproteinase 1 (TIMP-1) blocks liver hyperplasia during tumor development, despite TAg-mediated reactivation of IGF-II. Because the activity of IGFs is controlled by IGF-binding proteins (IGFBPs), we investigated whether TIMP-1 overexpression altered the IGFBP status in the transgenic liver. Ligand blotting showed that IGFBP-3 protein levels were increased in TIMP-1–overexpressing double transgenic littermates, whereas IGFBP-3 mRNA levels were not different, suggesting that TIMP-1 affects IGFBP-3 at a posttranscriptional level. IGFBP-3 proteolysis assays demonstrated that IGFBP-3 degradation was lower in TIMP-1–overexpressing livers, and zymography showed that matrix metalloproteinases (MMPs) were present in the liver homogenates and were capable of degrading IGFBP-3. As a consequence of reduced IGFBP-3 proteolysis and elevated IGFBP-3 protein levels, dissociable IGF-II levels were significantly lower in TIMP-1–overexpressing animals. This decrease in bioavailable IGF-II ultimately resulted in diminished IGF-I receptor signaling in vivo as evidenced by diminished receptor kinase activity and decreased tyrosine phosphorylation of the IGF-I receptor downstream effectors, insulin receptor substrate 1 (IRS-1), extracellular signal regulatory kinase (Erk)-1, and Erk-2. Together, these results provide evidence that TIMP-1 inhibits liver hyperplasia, an early event in TAg-mediated tumorigenesis, by reducing the activity of the tumor-inducing mitogen, IGF-II. These data implicate the control of MMP-mediated degradation of IGFBPs as a novel therapy for controlling IGF bioavailability in cancer.


Sign in / Sign up

Export Citation Format

Share Document