scholarly journals Theoretical and Numerical Research on V-Cut Parameters and Auxiliary Cuthole Criterion in Tunnelling

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaoming Lou ◽  
Bao Wang ◽  
En Wu ◽  
Mingwu Sun ◽  
Ping Zhou ◽  
...  

This paper aims at providing a sound theoretical solution to auxiliary central hole and the cutting parameters. For this purpose, the forming mechanism of V-cut cavity for cutting blasting was performed based on the hypothetical rock breaking mechanism of V-cut blasting. A theoretical solution for increasing the critical depth of the auxiliary center cuthole and the criteria for increasing the cuthole diameter of various types of cutholes when the rock attributes, explosive properties, and cuthole dip angle are constant are proposed. (1) If charging length le < 0.75H/sin θ, no auxiliary cuthole is needed. (2) If 0.75H/sin θ < le < 0.75H/sin θ + (2∼4) × 0.1, a central vertical auxiliary hole is needed. (3) If 0.75H/sin θ + (2∼4) × 0.1 < le < 0.75(H/sin θ + Hi/sin θi), a shallow inclined hole is needed. (4) If le > 0.75(H/sin θ + Hi/sin θi), both the central vertical cuthole and the shallow inclined cuthole are needed. Meanwhile, the theoretical solution was verified by numerical modelling with ANSYS/LS-DYNA. Moreover, the field implementation of the V-cut and the auxiliary hole effectively improved the blasting effect in both efficiency and economy.

Author(s):  
F. Lu ◽  
C. Zhang ◽  
J. Sun ◽  
J.X. Tian ◽  
M. Liu ◽  
...  

In order to improve working efficiency of the tunneling process and extend working life of disc cutter, explore the impact of cutter spacing and loading for the cutter rock-breaking effect. With the theory of rock crushing, Based on the finite element analysis software ABAQUS, the process of disc cutter breaking rock is simulated, considering the adjacent cutters sequential constraints, then, to make sure two cutter space with the method of SE in experiment.The simulation results showed that the optimal cutter spacings were both about 80mm in the same loading and the sequentially loading, but the rock-breaking effect of sequentially loading is better than the same loading. The experimental data showed that the minimum specific energy of rock breaking is appeared cutter spacing between 80mm and 90mm. Thus, the correctness and rationality of the simulation was verified. The study is good for understanding the rock-breaking mechanism of double disc cutter and has a certain promoting value to optimize TBM cutter system.Keywords:TBM, rock fragmentation, ABAQUS, cutter spacing, sequentially cutting


Author(s):  
Siqi Li ◽  
Shenglei Tian ◽  
Wei Li ◽  
Zhao Huan ◽  
Xin Ling ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Zhiwen Wang ◽  
Qingliang Zeng ◽  
Zhenguo Lu ◽  
Lirong Wan ◽  
Xin Zhang ◽  
...  

The new method of rock breaking based on the combination of circular sawblade and conical pick was proposed to improve the effectiveness of hard rock breaking. The numerical simulation method was applied to research the conical pick cutting arc rock plate by ANSYS/LS-DYNA. The conical pick cutting arc rock plate numerical simulation model was established to research the influence of arc rock plate structural parameters and cutting parameters on cracks formation and propagation of the arc rock plate and the cutting force in the process of conical pick cutting arc rock plate. The amount of cracks is positively correlated with arc rock plate thickness, the cutting speed, and distance of cutting point to arc rock plate central axis and negatively correlated with the cutting angle. The mean peak cutting force is positively correlated with the thickness of arc rock plate and the distance of cutting point to arc rock plate central axis; however, it is negatively correlated with the arc rock plate height and width and cutting angle of conical pick. The simulation results can be used to predict the conical pick work performance with various cutting parameters and structural parameters.


Author(s):  
N E Yasitli ◽  
F Bayram ◽  
B Unver ◽  
Y Ozcelik

Slab/strip production from blocks in natural stone processing plants is mostly carried out by using circular sawblade cutting machines. An efficient sawing operation can only be maintained by selecting proper cutting parameters. Experimental studies and numerical modelling methods are significant in terms of identifying the effective forces occurring during natural stone cutting with circular sawblades. In this study, experimental investigation was performed on real marble, known as Afyon White Marble, using a fully automatic circular sawblade stone cutting machine. Then, numerical modelling of circular sawing was performed with commercially available software called PFC3D. A discrete-element model of the sawing process was developed, and various numerical models were performed for different peripheral speeds and advance rates in compliance with the actual cutting operation being carried out in the laboratory. Finally, data obtained from the experimental studies were compared with the modelling data. A comparison indicates that the reactional cutting forces obtained by means of the numerical modelling are in good agreement with the results of the laboratory measurements. Consequently, the cutting operation can be determined quickly and economically. A literature review showed that, through this study, numerical modelling of the circular sawblade stone cutting process was successfully performed for the first time. It was envisaged that this would dynamically help in the examination of distinct factors in the area of natural stone processing by numerical modelling and in the illustration of the sawing mechanism.


2015 ◽  
Vol 220-221 ◽  
pp. 754-759
Author(s):  
Bartosz Koczurkiewicz ◽  
Marcin Knapiński ◽  
Henryk Dyja ◽  
Anna Kawałek

The paper presents the results of the physical and numerical modelling of heat treatment of experimental steels for pipelines. Simulation has been conducted at the Institute of Metal Forming and Safety Engineering of Częstochowa University of Technology. The numerical modelling of heat treatment has been carried using commercial program TTSteel. Based on the results of computer simulation, changes in steel microstructure during continuous cooling have been analysed, and the characteristics of temperature and the diagram of Continuous Cooling Transformation (CCT) have been constructed. Numerical research has been verified running the physical simulation of heat treatment of steel using dilatometer DIL805 A/D. The characteristic temperature of steel and the size of the former austenite grains have been determined. Also, the metallographic examination of the samples was conducted and Vickers hardness was tested. The obtained results have been used for building a real CCT diagram of steel.


2015 ◽  
Vol 286 ◽  
pp. 181-192 ◽  
Author(s):  
Xiaohui Liu ◽  
Songyong Liu ◽  
Huifu Ji

Sign in / Sign up

Export Citation Format

Share Document