scholarly journals Chitosan-Based Nanoparticles for Intracellular Delivery of ISAV Fusion Protein cDNA into Melanoma Cells: A Path to Develop Oncolytic Anticancer Therapies

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Claudia Robles-Planells ◽  
Giselle Sánchez-Guerrero ◽  
Carlos Barrera-Avalos ◽  
Silvia Matiacevich ◽  
Leonel E. Rojo ◽  
...  

Oncolytic virus therapy has been tested against cancer in preclinical models and clinical assays. Current evidence shows that viruses induce cytopathic effects associated with fusogenic protein-mediated syncytium formation and immunogenic cell death of eukaryotic cells. We have previously demonstrated that tumor cell bodies generated from cells expressing the fusogenic protein of the infectious salmon anemia virus (ISAV-F) enhance crosspriming and display prophylactic antitumor activity against melanoma tumors. In this work, we evaluated the effects of the expression of ISAV-F on the B16 melanoma model, both in vitro and in vivo, using chitosan nanoparticles as transfection vehicle. We confirmed that the transfection of B16 tumor cells with chitosan nanoparticles (NP-ISAV) allows the expression of a fusogenically active ISAV-F protein and decreases cell viability because of syncytium formation in vitro. However, the in vivo transfection induces a delay in tumor growth, without inducing changes on the lymphoid populations in the tumor and the spleen. Altogether, our observations show that expression of ISAV fusion protein using chitosan nanoparticles induces cell fusion in melanoma cells and slight antitumor response.

2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Claudia Robles-Planells ◽  
Carlos Barrera-Avalos ◽  
Leonel E. Rojo ◽  
Eugenio Spencer ◽  
Marcelo Cortez-San Martin ◽  
...  

Reovirus is known to have an anticancer effect in both the preclinical and clinical assays. Current evidence suggests that the reovirus-mediated impact on tumor growth depends on the activation of specific antitumor immune responses. A feasible explanation for the oncolytic effects and immune system activation is through the expression of the fusogenic reovirus protein. In this work, we evaluated the in vivo antitumor effects of the expression of fusogenic protein p10 of avian reovirus (ARV-p10). We used chitosan nanoparticles (CH-NPs) as a vehicle for the ARV-p10 DNA in murine B16 melanoma models both in vitro and in vivo. We confirmed that ARV-p10 delivery through a chitosan-based formulation (ARV-p10 CH-NPs) was capable of inducing cell fusion in cultured melanoma cells, showing a mild cytotoxic effect. Interestingly, intratumor injection of ARV-p10 CH-NPs delayed tumor growth, without changing lymphoid populations in the tumor tissue and spleen. The injection of chitosan nanoparticles (CH-NPs) also delayed tumor growth, suggesting the nanoparticle itself would attack tumor cells. In conclusion, we proved that in vitro ARV-p10 protein expression using CH-NPs in murine melanoma cells induces a cytotoxic effect associated with its cell fusion. Further studies are necessary for establishing a protocol for efficient in vivo DNA delivery of fusion proteins to produce an antitumoral effect.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 416
Author(s):  
Nicolás Ojeda ◽  
Constanza Cárdenas ◽  
Sergio Marshall

The infectious salmon anemia virus (ISAV), etiological agent of the disease by the same name, causes major losses to the salmon industry. Classified as a member of the Orthomyxoviridae family, ISAV is characterized by the presence of two surface glycoproteins termed hemagglutinin esterase (HE) and fusion protein (F), both of them directly involved in the initial interaction of the virus with the target cell. HE mediates receptor binding and destruction, while F promotes the fusion process of the viral and cell membranes. The carboxy-terminal end of F (F2) possesses canonical structural characteristics of a type I fusion protein, while no functional properties have been proposed for the amino-terminal (F1) region. In this report, based on in silico modeling, we propose a tertiary structure for the F1 region, which resembles a sialic acid binding domain. Furthermore, using recombinant forms of both HE and F proteins and an in vitro model system, we demonstrate the interaction of F with a cell receptor, the hydrolysis of this receptor by the HE esterase, and a crucial role for F1 in the fusion mechanism. Our interpretation is that binding of F to its cell receptor is fundamental for membrane fusion and that the esterase in HE modulates this interaction.


2020 ◽  
Vol 21 (2) ◽  
pp. 681
Author(s):  
Jian-Ching Wu ◽  
Han-En Tsai ◽  
Yi-Hsiang Hsiao ◽  
Ji-Syuan Wu ◽  
Chieh-Shan Wu ◽  
...  

Melanotan II (MTII), a synthetic analogue of the alpha-melanocyte stimulating hormone (α-MSH), has been applied for skin tanning in humans. However, the carcinogenic consequence of topical MTII has been equivocal. This study aims to delineate the anti-neoplastic efficacy and mechanism of MTII using the B16-F10 melanoma model in vitro and in vivo. It was found that, despite a lack of influence on proliferation, MTII potently inhibited the migration, invasion, and colony-forming capability of melanoma cells. Moreover, topical MTII application significantly attenuated the tumor progression in mice bearing established melanoma. Histological analysis revealed that MTII therapy induced apoptosis while inhibiting the proliferation and neovaluarization in melanoma tissues. By immunoblot and immunohistochemical analysis, it was found that MTII dose-dependently increased the phosphatase and tensin homolog (PTEN) protein level while reducing PTEN phosphorylation, which resulted in the inhibition of AKT/nuclear factor kappa B (NFκB) signaling. Consistently, MTII treatment inhibited cyclooxygenase II (COX-2) expression and prostaglandin E2 (PGE2) production in melanoma cells. Finally, studies of antibody neutralization suggest that the melanocortin 1 receptor (MC1R) plays a critical role in MTII-induced PTEN upregulation and melanoma suppression. Together, these results indicate that MTII elicits PTEN upregulation via MC1R, thereby suppressing melanoma progression through downregulating COX-2/PGE2 signaling. Hence, topical MTII therapy may facilitate a novel therapeutic strategy against melanoma.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


2021 ◽  
Vol 8 (2) ◽  
Author(s):  
Yue Li ◽  
QingQing Leng ◽  
XianLun Pang ◽  
Huan Shi ◽  
YanLin Liu ◽  
...  

Abstract Dermal injury, including trauma, surgical incisions, and burns, remain the most prevalent socio-economical health care issue in the clinic. Nanomedicine represents a reliable administration strategy that can promote the healing of skin lesions, but the lack of effective drug delivery methods can limit its effectiveness. In this study, we developed a novel nano-drug delivery system to treat skin defects through spraying. We prepared curcumin-loaded chitosan nanoparticles modified with epidermal growth factor (EGF) to develop an aqueous EGF-modified spray (EGF@CCN) for the treatment of dermal wounds. In vitro assays showed that the EGF@CCN displayed low cytotoxicity, and that curcumin was continuously and slowly released from the EGF@CCN. In vivo efficacy on wound healing was then evaluated using full-thickness dermal defect models in Wistar rats, showing that the EGF@CCN had significant advantages in promoting wound healing. On day 12 post-operation, skin defects in the rats of the EGF@CCN group were almost completely restored. These effects were related to the activity of curcumin and EGF on skin healing, and the high compatibility of the nano formulation. We therefore conclude that the prepared nano-scaled EGF@CCN spray represents a promising strategy for the treatment of dermal wounds.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 207
Author(s):  
Diane L. Ritchie ◽  
Marcelo A. Barria

The accumulation and propagation in the brain of misfolded proteins is a pathological hallmark shared by many neurodegenerative diseases such as Alzheimer’s disease (Aβ and tau), Parkinson’s disease (α-synuclein), and prion disease (prion protein). Currently, there is no epidemiological evidence to suggest that neurodegenerative disorders are infectious, apart from prion diseases. However, there is an increasing body of evidence from experimental models to suggest that other pathogenic proteins such as Aβ and tau can propagate in vivo and in vitro in a prion-like mechanism, inducing the formation of misfolded protein aggregates such as amyloid plaques and neurofibrillary tangles. Such similarities have raised concerns that misfolded proteins, other than the prion protein, could potentially transmit from person-to-person as rare events after lengthy incubation periods. Such concerns have been heightened following a number of recent reports of the possible inadvertent transmission of Aβ pathology via medical and surgical procedures. This review will provide a historical perspective on the unique transmissible nature of prion diseases, examining their impact on public health and the ongoing concerns raised by this rare group of disorders. Additionally, this review will provide an insight into current evidence supporting the potential transmissibility of other pathogenic proteins associated with more common neurodegenerative disorders and the potential implications for public health.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1066
Author(s):  
Ali Zari ◽  
Hajer Alfarteesh ◽  
Carly Buckner ◽  
Robert Lafrenie

Uncaria tomentosa is a medicinal plant native to Peru that has been traditionally used in the treatment of various inflammatory disorders. In this study, the effectiveness of U. tomentosa as an anti-cancer agent was assessed using the growth and survival of B16-BL6 mouse melanoma cells. B16-BL6 cell cultures treated with both ethanol and phosphate-buffered saline (PBS) extracts of U. tomentosa displayed up to 80% lower levels of growth and increased apoptosis compared to vehicle controls. Treatment with ethanolic extracts of Uncaria tomentosa were much more effective than treatment with aqueous extracts. U. tomentosa was also shown to inhibit B16-BL6 cell growth in C57/bl mice in vivo. Mice injected with both the ethanolic and aqueous extracts of U. tomentosa showed a 59 ± 13% decrease in B16-BL6 tumour weight and a 40 ± 9% decrease in tumour size. Histochemical analysis of the B16-BL6 tumours showed a strong reduction in the Ki-67 cell proliferation marker in U. tomentosa-treated mice and a small, but insignificant increase in terminal transferase dUTP nick labelling (TUNEL) staining. Furthermore, U. tomentosa extracts reduced angiogenic markers and reduced the infiltration of T cells into the tumours. Collectively, the results in this study concluded that U. tomentosa has potent anti-cancer activity that significantly inhibited cancer cells in vitro and in vivo.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Alessia Varone ◽  
Chiara Amoruso ◽  
Marcello Monti ◽  
Manpreet Patheja ◽  
Adelaide Greco ◽  
...  

Abstract Background Invadopodia are actin-based cell-membrane protrusions associated with the extracellular matrix degradation accompanying cancer invasion. The elucidation of the molecular mechanisms leading to invadopodia formation and activity is central for the prevention of tumor spreading and growth. Protein tyrosine kinases such as Src are known to regulate invadopodia assembly, little is however known on the role of protein tyrosine phosphatases in this process. Among these enzymes, we have selected the tyrosine phosphatase Shp1 to investigate its potential role in invadopodia assembly, due to its involvement in cancer development. Methods Co-immunoprecipitation and immunofluorescence studies were employed to identify novel substrate/s of Shp1AQ controlling invadopodia activity. The phosphorylation level of cortactin, the Shp1 substrate identified in this study, was assessed by immunoprecipitation, in vitro phosphatase and western blot assays. Short interference RNA and a catalytically-dead mutant of Shp1 expressed in A375MM melanoma cells were used to evaluate the role of the specific Shp1-mediated dephosphorylation of cortactin. The anti-invasive proprieties of glycerophosphoinositol, that directly binds and regulates Shp1, were investigated by extracellular matrix degradation assays and in vivo mouse model of metastasis. Results The data show that Shp1 was recruited to invadopodia and promoted the dephosphorylation of cortactin at tyrosine 421, leading to an attenuated capacity of melanoma cancer cells to degrade the extracellular matrix. Controls included the use of short interference RNA and catalytically-dead mutant that prevented the dephosphorylation of cortactin and hence the decrease the extracellular matrix degradation by melanoma cells. In addition, the phosphoinositide metabolite glycerophosphoinositol facilitated the localization of Shp1 at invadopodia hence promoting cortactin dephosphorylation. This impaired invadopodia function and tumor dissemination both in vitro and in an in vivo model of melanomas. Conclusion The main finding here reported is that cortactin is a specific substrate of the tyrosine phosphatase Shp1 and that its phosphorylation/dephosphorylation affects invadopodia formation and, as a consequence, the ability of melanoma cells to invade the extracellular matrix. Shp1 can thus be considered as a regulator of melanoma cell invasiveness and a potential target for antimetastatic drugs.


Sign in / Sign up

Export Citation Format

Share Document