scholarly journals Key Factors Affecting the Deformation and Failure of Surrounding Rock Masses in Large-Scale Underground Powerhouses

2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Meng Wang ◽  
Jia-wen Zhou ◽  
An-chi Shi ◽  
Jin-qi Han ◽  
Hai-bo Li

The stability of the surrounding rock masses of underground powerhouses is always emphasized during the construction period. With the general trends toward large-scale, complex geological conditions and the rapid construction progress of underground powerhouses, deformation and failure issues of the surrounding rock mass can emerge, putting the safety of construction and operation in jeopardy and causing enormous economic loss. To solve these problems, an understanding of the origins and key affecting factors is required. Based on domestic large-scale underground powerhouse cases in the past two decades, key factors affecting the deformation and failure of the surrounding rock mass are summarized in this paper. Among these factors, the two most fundamental factors are the rock mass properties and in situ stress, which impart tremendous impacts on surrounding rock mass stability in a number of cases. Excavation is a prerequisite of surrounding rock mass failure and support that is classified as part of the construction process and plays a pivotal role in preventing and arresting deformation and failure. Additionally, the layout and structure of the powerhouse are consequential. The interrelation and interaction of these factors are discussed at the end of this paper. The results can hopefully advance the understanding of the deformation and failure of surrounding rock masses and provide a reference for design and construction with respect to hydroelectric underground powerhouses.

2011 ◽  
Vol 71-78 ◽  
pp. 644-650 ◽  
Author(s):  
Jin Yu Dong ◽  
Ji Hong Yang ◽  
Guo Xiang Yang ◽  
Fa Quan Wu

Jinoping No.1 is a dominant reservoir cascade hydropower station which locates at the downstream of Yalong river. The underground powerhouse locates at the right bank of the dam, lithology is marble that belongs to the second member of Zagunao group. It is constructed at region with very complicated geological conditions and high geo-stress. Concrete cracking, spalling and steel buckling and bending occurred at the downstream crown after supporting. This paper analysed the causes of deformation and failure through geological analysis and numerical simulation, and concluded that deformation and failure mainly occurred at the region where the quality of surrounding rock belongs to Ⅲ1 and had nothing to do with the unstable block cut by cracks; stress field of surrounding rock varied continueously with the proceeding of successive excavation of underground powerhouse, so the compressive stress and shear stress concentration occurred which caused the compression and shear failure of downstream crown and made it bending to the free face. It is significant to the further enforcement of this project and to the research on other similar underground caverns theoretically and practically.


2013 ◽  
Vol 838-841 ◽  
pp. 889-893
Author(s):  
Biao Li ◽  
Feng Dai ◽  
Nu Wen Xu ◽  
Chun Sha

The right bank underground powerhouse of Houziyan hydropower station is a typical deep-buried type with high geostress and complicated geological conditions. To monitor and analyze the stability of surrounding rock mass during continuous excavation of the powerhouse excavation and locate the potential failure zones, an ESG (Engineering Seismology Group) microseismic monitoring system manufactured in Canada was installed in April, 2013. The wave velocity of the monitoring system was determined through fixed blasting tests. And the average location error is the minimum while P-wave velocity is 5700m/s, less than 10m and meeting the system request. By combining the temporal and spatial distribution regularity of microseimic events with field excavation, micro-crack clusters and potential instability zones were identified and delineated. The results will provide a reference for later excavations and supports of the underground powerhouse. Furthermore, a new monitoring method can also be supplied for the stability analysis of surrounding rock mass in deep-buried underground powerhouses.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fei Yuan ◽  
An-chi Shi ◽  
Jia-wen Zhou ◽  
Wang-bing Hong ◽  
Meng Wang ◽  
...  

In the process of underground cavern excavation, the existence of the interlayer shear zones or large faults often makes the surrounding rock tend to be unstable or even deformed. Under the influence of interlayer shear zone C2, different degrees of deformation and failure occurred in many parts during the excavation of the Baihetan left bank underground powerhouse. Based on field monitoring and numerical calculation, this paper studies the deformation and failure characteristics of the rock mass with C2 in the whole excavation process and the failure mechanisms are analyzed. The results show that C2 has poor mechanical properties. In the process of excavation, it mainly induces two failure modes: rock collapse and shear deformation, which specifically leads to rock collapses, large deformation and shotcrete cracking in the main powerhouse, and shear deformation in the omnibus bar caves. In addition, the similarities and differences between this study and other studies on the deformation and failure of surrounding rock of underground powerhouse in recent years are discussed, and the relevant treatment measures for C2 are given. The above research results can be a reference for other related studies.


2021 ◽  
Vol 249 ◽  
pp. 334-341
Author(s):  
Igor Alenichev ◽  
Ruslan Rakhmanov

Minimizing the discharge of blasted rock mass into the developed space of the pit is a very relevant area for study, as it allows to increase the processability of work and reduce the cost of mining. The article presents the results of experimental industrial explosions, during which the study of this issue was conducted. The main purpose of the work was to establish the key factors affecting the volume of rock mass discharge to the pit haulage berm. During the analysis of the world experience of research on this topic, the key factors affecting the formation of collapse and discharge – natural and technological – are identified. The method of conducting experiments and collecting data for analyzing the influence of technological parameters of location, charging and initiation of wells on the volume of rock mass discharge is described. It is established that the main discharge to the pit haulage berm is formed by the volume of rock mass limited by the prism of the slope angle. With a sufficient rock mass displacement from the edge of the bench crest towards the center of the block, only the wells of the 1st and 2nd rows participate in the discharge formation. Empirical dependences of the total volume of rock mass discharge on the length of the block along the bench crest, the specific consumption of explosives, the size of a rock piece P50 and the rate of rock breaking are obtained. The obtained results can be used to design the parameters of the drilling and blasting operations (DBO), as well as to predict and evaluate the possible consequences of a mass explosion in similar mining and geological conditions.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Qiangling Yao ◽  
Xuehua Li ◽  
Fan Pan ◽  
Teng Wang ◽  
Guang Wang

The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD). We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.


2013 ◽  
Vol 838-841 ◽  
pp. 705-709
Author(s):  
Yun Hao Yang ◽  
Ren Kun Wang

Large scale underground caverns are under construction in high in-situ stress field at Houziyan hydropower station. To investigate deformation and damage of surrounding rock mass, a elastoplastic orthotropic damage model capable of describing induced orthotropic damage and post-peak behavior of hard rock is used, together with a effective approach accounting for the presence of weak planes. Then a displacement based back analysis was conducted by using the measured deformation data from extensometers. The computed displacements are in good agreement with the measured ones at most of measurement points, which confirm the validities of constitutive model and numerical simulation model. The result of simulation shows that damage of surrounding rock mass is mainly dominated by the high in-situ stress rather than the weak planes and heavy damage occur at the cavern shoulders and side walls.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Min Gao ◽  
Shanpo Jia

Rock bolts, one of the main support structures of the tunnel, can improve the stress state and mechanical properties of the surrounding rocks. The rock bolts are simulated by bar or beam elements in present numerical calculations for most 2D tunnel models. However, the methods of simulating rock bolt in three-dimensional models are rarely studied. Moreover, there are too many rock bolts in the long-span tunnel, which are hardly applied in the 3D numerical model. Therefore, an equivalent anchoring method for bolted rock masses needs to be further investigated. First, the jointed material model is modified to simulate the anisotropic properties of surrounding rock masses. Then, based on the theoretical analysis of rock bolts in reinforcing mechanical properties of the surrounding rock masses, the equivalent anchoring method of the jointed rock mass tunnel is numerically studied. The equivalent anchoring method is applied to the stability analysis of a diversion tunnel in Western China. From the calculation results, it could be found that the reinforcement effect of rock bolts could be equivalently simulated by increasing the mechanical parameter value of surrounding rocks. For the jointed rock mass tunnel, the cohesion and internal friction angle of the surrounding rocks are improved as 1.7 times and 1.2 times of the initial value, which can simulate the reinforcement effect of rock bolts. Comparing with analytical results, the improved internal friction angle is nearly consistent with analytical result. The reinforcement effect of rock bolts is simulated obviously when the mechanical parameters of surrounding rocks are increased simultaneously. The engineering application shows that the equivalent anchoring method can reasonably simulate the effect of rock bolts, which can provide reference for stability analysis of three-dimensional tunnel simulations.


2021 ◽  
Author(s):  
Y L Wang ◽  
D S Liu ◽  
K Li ◽  
X M Hu ◽  
D Chen

The mechanical characteristics and failure modes of low-strength rock sample with various fissure dip angles were investigated by conventional uniaxial compression test and three-dimensional (3D) crack reconstruction. The results indicated that compared with high-strength rock masses, cracks had different influences on the low-strength rock mass mechanical deformation features. Thereinto, the dip angle of fissures can cause post-peak failure stage of stress-strain curve change from swift decline to multi-step down, showing obvious ductility deformation and failure characteristics. Peak strength and elastic modulus owned an anti-S-shaped growth tendency with the growth of fissure dip angle, which was positively correlated and greatest subtle to the fissure dip angle α < 21° and α > 66.5°. The axial peak strain reduced first and enlarged rapidly with growing fissure dip angle, suggesting a V-shaped change trend. Increasing the fissure dip angle will change the sample failure mode, experienced complete tensile failure to tensile-shear composite failure, and ultimately to typical shear failure. Also, the crack start angle decreased with enlarging fissure dip angle, larger than that the high-strength rock mass fissure dip angle. The above research findings can complement and improve the study of fissured rock masses.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Guannan Zhou ◽  
Zijiang Zhao ◽  
Zhanping Song ◽  
Hongjian Wang

Due to poor engineering geological conditions of Liujiazhuang tunnel on Shanghai-Kunming Passenger Dedicated Line, the large deformation of weak rock occurs repeatedly during tunnel construction. In this paper, the large-scale finite element software ABAQUS is used to simulate the construction process of a large-section tunnel in weak surrounding rock. It is found that when tunnel face passes through the coal seam, the displacement and stress simulated by the bench method increase abruptly. The maximum stress reaches up to 18 MPa, and displacement reaches 45 mm, which is about twice when without crossing coal seam. It is technically feasible to use the bench method for tunnel construction, under the condition when large settlements is allowed; additionally, the bench method has better technical and economic benefits than that of the CD method. Through the comparative analysis of onsite monitoring data and numerical simulation results, it can be seen that the tunnel is in a dangerous state when passing through the coal seam and measures such as strengthening support or auxiliary advance support should be taken immediately to control the surrounding rock and to ensure tunnel construction safety.


2011 ◽  
Vol 368-373 ◽  
pp. 2517-2520
Author(s):  
Da Ming Lin ◽  
Yan Jun Shang ◽  
Guo He Li ◽  
Yuan Chun Sun

There are many effective researches about tunnel at home and abroad, because the complexity of design and construction for Y-shape tunnel, in public there is no research about it yet, with the background of nanliang-tunnel which merge two single-beam into a two-lane tunnel as Y-shape. This paper obtains the rock mass mechanics parameters on the basis of nonlinear Hoek-Brown criterion first, and has a numerical simulation according the tunnel construction with FLAC-3D. we arrange many monitor sections in this model and discuss the law of deformation and failure in different section, at last have a comprehensive analysis of displacement, stress, plastic zone of different sites which caused by tunnel construction and discover that: with the distance of two single tunnels decreased, the interaction caused by the merging increase together with the compressive stress, tensile stress. The displacements of surrounding rock increase corresponding, the amplitude of variation is up to 44.8%, After the two-lane tunnel is 15m long, the stress and displacements redistribution of surrounding rock become stable.


Sign in / Sign up

Export Citation Format

Share Document