scholarly journals Enhanced Mechanical and Microstructural Properties of Portland Cement Composites Modified with Submicron Metakaolin

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yaoyu Wang ◽  
Jiye Li ◽  
Lihan Jiang ◽  
Lihua Zhao

This work aims to study the influence of submicron metakaolin (SMK) on the mechanical strength, pore structure, and microstructural properties of hardened cement-based slurry (HCS). Portland cement was replaced by SMK at a proportion of 1, 3, 5, and 7 wt%. The compressive strength and flexural strength of the HCS samples were tested at a curing period of 3, 7, 14, and 28 days, and the pore structure of the specimens was analyzed by mercury intrusion porosimetry (MIP) at a curing period of 3 and 28 days. The microstructure characteristics of the hardened samples were investigated by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Thermogravimetric analysis (TGA) was also employed to analyze the change in the chemical composition of the HCS. The results showed that the SMK could accelerate the hydration rate of the cement and could improve the mechanical properties of the HCS; the compressive strength and flexural strength of the HCS samples were remarkably enhanced, compared to those of the plain cement, by 67 and 46%, respectively, at a curing period of 3 days and by 33 and 35%, respectively, at a curing period of 28 days. The SMK had a significant impact on the internal pore structure of the hardened samples, and the number of pores with a diameter of larger than 3000 nm significantly decreased. Because the hydration products filled the pores, the microstructure of the HCS was further refined and densified with the addition of SMK. Submicron metakaolin has a simple process and high activity, which can significantly improve the performance of the cement slurry. Therefore, submicron metakaolin has the potential for practical engineering applications.

Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3290
Author(s):  
Taewan Kim ◽  
Choonghyun Kang ◽  
Sungnam Hong ◽  
Ki-Young Seo

This study investigates the mechanical and microstructural properties of paste comprising ordinary Portland cement (OPC) added with polyaluminum chloride (PACl). The properties of the resulting mixture are analyzed using compressive strength, X-ray diffraction, scanning electron microscopy (SEM), mercury intrusion porosimetry, and thermogravimetric analysis. The results show that the addition of PACl improves the mechanical properties of OPC paste, that calcium-(aluminum)-silicate-hydrate (C-(A)-S-H) gel and Friedel’s salt are the major products forming from the reaction with the aluminum and chloride ions in PACl, and that the portlandite content decreases. Moreover, the size and number of micropores decrease, and compressive strength increases. All these phenomena are amplified by increasing PACl content. SEM images confirm these findings by revealing Friedel’s salt in the micropores. Thus, this work confirms that adding PACl to OPC results in a mixture with superior mechanical and microstructural properties.


GIS Business ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 158-165 ◽  
Author(s):  
Dr. Sarvesh PS Rajput

This study reported that the addition of nano-silica enhances the mechanical characteristics of concrete as its compressive, flexural and tensile split strengths are increased. As a comparison mixture to equate it along with nano-modified concrete, ordinary samples of Portland cement (OPC) have been utilized. Herein, upto 6.0 percent of OPC has been substituted by nanosilica. In fact, the introduction of nanosilica improves mechanical and microstructural characteristics of concrete by significantly (28 to 35%). The finding therefore, indicated that partly replacing OPC with up to 5 percent nanosilica increases the mechanical and microstructural properties cured up to ninety days as opposed to the standard OPC mix.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


Author(s):  
Nguyen Van Chinh

Drying shrinkage is the main cause of early age cracking of concrete and mortar. A wide range of research has been conducted to reduce the drying shrinkage, including using fibres or chemical admixtures. This paper investigated the effect of shrinkage reducing admixture on the flexural strength, compressive strength, drying shrinkage, water absorption and porosity of mortar. The mix compositions were ordinary Portland cement (OPC) : sand : liquid = 1: 1: 0.38 in which liquid consisted of water and shrinkage reducing admixture (SRA). SRA was used at the proportions of 2%, 4%, and 7% by weight of cement. The test results show that SRA reduces the flexural and compressive strengths of mortar. The reduction in flexural strength and compressive strength at 28 days is 14% and 25%, respectively at 7% SRA dosage. In addition, SRA significantly reduces the drying shrinkage and water absorption of mortar. At 7% SRA dosage, the drying shrinkage at 53 days is reduced by 60% while the water absorption rate at 24 hours is reduced by 54%. However, SRA has a minor effect on the pore size distribution, effective porosity, and cumulative intrusion volume of mortar.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Wang ◽  
Geng Yao ◽  
Xiangnan Zhu ◽  
Junxiang Wang ◽  
Peng Wu ◽  
...  

The disposal of gold ore tailings (GTs) has been a very difficult problem for a long time. Thus, this study explored a new approach to the management of GTs by preparing Portland cement. Physical properties, reaction mechanisms, and hydration product types of cement prepared with GTs (C-GTs) and ordinary Portland cement (C-SS) were compared. X-ray diffraction (XRD), thermogravimetric (TG), and scanning electron microscope energy-dispersive spectroscopy (SEM-EDS) analysis techniques were used to study the mineralogical phases of the clinker and raw materials, hydration product types, and microtopography. The consistency, setting time, flexural strength and compressive strength values of the cement samples (C-GTs and C-SS), and burnability of the raw materials were also studied. The burnability analysis indicated that GTs provided a higher reactivity. The XRD results showed that the clinker phases of the C-GTs were C3S, C2S, C3A, and C4AF. The XRD, TG, and SEM-EDS results showed that the hydration products were flaky calcium hydroxide, rod-shaped ettringite, and granular C-S-H gels. Its compressive strength and flexural strength were, respectively, 30.4 MPa and 6.1 MPa at the curing age of 3 days and 59.1 MPa and 9.8 MPa at the curing age of 28 days, which were slightly higher than those of the C-SS. Furthermore, the results showed that the consistency, initial setting time, and final setting time for the two kinds of cement were similar, which further suggested that GTs could be used to prepare Portland cement.


1984 ◽  
Vol 42 ◽  
Author(s):  
Huang Yiun-Yuan ◽  
Ding Wei ◽  
Lu Ping

AbstractThe pore-structure strongly influences the carpressive strength of hardened cement paste (hcp) and other porous materials, as well as other mechanical properties. The simplest but most currently used expression representing the relationship between the pore-structure and compressive strength is fram Balshin: σ = σ0 (l-P)A, in which only the total porosity P is involved as a single parameter and σ0 and A are empirical constants. The influence of pore size distribution and pore shapes etc. are not considered.The authors introduce second parameter w - the factor of relative specific surface area of the pores other than the total porosity P into consideration and a new expression is proposed:σc=K11-p/1+2p(K2(1-p))K3w+K4 all the constants K1 - K4 can be determined experimentally. By using of this expression the new information relating the influence of pore-structure on the caopressive strength of hcp can be predicted.


2013 ◽  
Vol 327 ◽  
pp. 40-43
Author(s):  
Xiao Long Li ◽  
Guo Zhong Li

The ordinary portland cement was used to prepare foamed cement insulation materials by physical foaming method. The influence of different process of fiber added to the foamed cement insulation materials on its performance was studied and the optimum mix ratio of raw materials was determined. The results showed that the glass fire could be evenly dispersed in the slurry by dry adding technology and got better enhanced effect. When the dosage of glass fire was 0.9%, the performance of the foamed cement material as follows: dry density of 318 kg/m3, 3d flexural strength of 0.61MPa, 3d compressive strength of 1.05MPa, thermal conductivity of 0.065W/(m·k). The reinforce mechanism of glass fire was explored.


1988 ◽  
Vol 15 (5) ◽  
pp. 776-783
Author(s):  
H. S. Wilson

Two similar mixes were made with cement contents of about 350 kg/m3 and a water–cement ratio of 0.50. The concrete specimens, moist cured for 7 days, were cured in air for 28 and 120 days, respectively, prior to heating. The exposure temperatures were 75, 150, 300, and 450 °C. The periods of exposure at each temperature were 2, 30, and 120 days.The compressive strengths, before heating, of the specimens cured for 35 and 120 days were 41.0 and 46.2 MPa, respectively, and the flexural strengths were 4.9 and 5.8 MPa. Compared with those strengths, the strengths of the specimens heated for 30 days or more increased at 75 °C but decreased at higher temperatures. The losses increased with increase in temperature, reaching about 30% at 450 °C.The flexural strength of the concrete cured in air for 28 days was more adversely affected than was the compressive strength. The flexural and compressive strengths of the concrete cured in air for 120 days were affected to about the same degree. The longer curing period had little effect on the relative losses in compressive strength, but the longer curing period reduced the loss in flexural strength. In most applications, the loss in strength could be compensated by proportioning the mix to overdesign for strength. Key words: high-density concrete, ilmenite, aggregates, high temperature, mechanical properties, nondestructive tests.


2014 ◽  
Vol 1000 ◽  
pp. 277-280 ◽  
Author(s):  
Pavel Šiler ◽  
Ondřej Bezděk ◽  
Iva Kolářová ◽  
Eva Bartoníčková ◽  
Tomáš Opravil ◽  
...  

This work is focused on the influence of aggregates on the mechanical properties of concrete and hydration process. The flexural strength and compressive strength were observed after 1, 7 and 28 days of curing. The process of hydration was monitored using isoperibolic calorimetry. Laser particle size analysis of aggregates was also performed. The following materials were used: Portland cement CEM I 42,5 R-Sc, finely ground silica sand, calcinated bauxite, fine, medium and rough testing sand (defined in ČSN EN 196-1).


Sign in / Sign up

Export Citation Format

Share Document