scholarly journals Development of Itraconazole-Loaded Polymeric Nanoparticle Dermal Gel for Enhanced Antifungal Efficacy

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Hoang Nhan Ho ◽  
Thien Giap Le ◽  
Thi Thanh Tuyen Dao ◽  
Thi Ha Le ◽  
Thi Thanh Hai Dinh ◽  
...  

Fungal infection of the skin is one of the most common dermatological diseases in the world. Gel formulations are among the most suitable dosage forms for topical use to treat cutaneous infection. Nanotechnology is a promising approach to penetrate the deeper skin layers and enhance permeability of itraconazole (ITZ) through the stratum corneum. ITZ-loaded nanoparticles (ITZ NPs) were fabricated using the evaporation emulsion method, followed by incorporation of NPs into gel using Carbopol 934 as the gel-forming excipient. The physical properties, in vitro release, ex vivo permeation studies, and antifungal activity of ITZ NP gel were characterized. ITZ NPs were almost spherical in shape with colloidal sizes in the range of 200 nm. The drug encapsulation efficiency was 98.79 ± 1.24 %. ITZ NP gel demonstrated a sustained ex vivo permeation of ITZ over 24 h through excised rat skin and a higher drug penetrating capacity than that of a gel containing ITZ-saturated suspension. The in vitro antifungal activity of the ITZ-loaded NP incorporated gel was better than that of ITZ dispersion. Incorporation of the ITZ-loaded nanosystem into gel has the potential to enhance antifungal activity through transdermal drug delivery.

2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


Author(s):  
Nallaguntla Lavanya ◽  
Indira Muzib ◽  
Aukunuru Jithan ◽  
Balekari Umamahesh

Objective: The objective of the present study was to prepare and evaluate a novel oral formulation of nanoparticles for the systemic delivery of low molecular weight heparin (LMWH). Methods: Nanoparticles were prepared by polyelectrolyte complexation (PEC) method using polymers sodium alginate and chitosan. Entrapment efficiency of LMWH in nanoparticles was found to be  ̴88%. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X‑ray diffraction (XRD), Scanning electron microscopy (SEM)  studies carried for nanoparticles. In vitro release studies were performed for the formulations. Ex vivo permeation studies were performed optimized formulation by using small intestine of rat and in vivo studies were conducted on rat model.Results: In vitro release studies demonstrated that the release of LMWH was negligible in the stomach and high in the small intestine. FTIR has indicated that there is no interaction between the ingredients in nanoparticle. DSC and XRD studies confirmed that the amino groups of chitosan interacted with the carboxylic groups of alginate. Invitro % drug release of 95% was shown by formulation AC5. Ex vivo permeation studies have elucidated that ̴ 73% of LMWH was transported across the epithelium. Nanoparticles have shown enhanced oral bioavailability of LMWH as revealed by 4.5 fold increase in AUC of plasma drug concentration time curve.Conclusion: The results suggest that the nanoparticles prepared can result in targeted delivery of LMWH into systemic circulation via intestinal and colon routes. Novel nanoparticles thus prepared in this study can be considered as a promising delivery system.Keywords: Antifactor Xa activity, Chitosan, Differential scanning calorimetry, Sodium alginate, Low-molecular-weight heparin, Oral bioavailability.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (09) ◽  
pp. 74-77
Author(s):  
C Trimukhe ◽  
P. Patil ◽  
K. Sheth ◽  
N. Desai ◽  

The objective of the present study was to develop and evaluate a nanolipid transdermal emulgel of Nimesulide. The nanolipid particles of Nimesulide were developed using Compritol 888 ATO and Labrafil M1944 as lipids, Polysorbate 80 as surfactant with Poloxamer 188 and Polyethylene Glycol 400 as stabilizer and cosolvent respectively. The nanoparticles were developed by Hot Nanoemulsification Low Temperature Solidification method and showed drug entrapment efficiency of 67 ± 2.316 % with particle size of 500 – 600 nm. TEM studies indicated presence of spherical particles in the nanometric range. The nanolipidic dispersions were suitably gelled to form emulgel. The in vitro release of the developed emulgel showed sustained drug release for 8 hours with no evidence of toxicity during histopathological testing after ex vivo permeation studies. The nanolipid emulgel of Nimesulide can thus provide sustained release action due to enhanced skin deposition for effective treatment of chronic arthritic conditions, thereby improving patient compliance.


Author(s):  
Anupam Sarma ◽  
◽  
Tapash Chakraborty ◽  
Sheikh Sofiur Rahman ◽  
Abdul Baquee Ahmed ◽  
...  

The aim of the present study was to develop pharmaceutically better performing Diclofenac Sodium hydrogel through FbD approaches as compared to marketed gel. The quality target product profile was set for the critical quality attributes of the gel. The key material variables like Carbopol 934P, propylene glycol and Triethanolamine (TEA) were optimized using design of experiments. A response surface central composite design was used considering viscosity, pH and cumulative percentage permeation of the drug up to 120 min as responses. TEA had a significant effect on the pH at concentrations of 0.3182-3.6818% (w/w). The applicability of the optimized formulations was influenced by both Carbopol 934P (0.6591-2.3409%; w/w) and propylene glycol (PG; 6.591-23.409%; w/w) content due to their ability to alter the formulation viscosity. The optimized formulation, determined mathematically, contained 1.5% (w/w) Carbopol 934P. 2.0% (w/w) TEA and 15% (w/w) PG. The optimized hydrogel and marketed gel were evaluated for viscosity, spreadability, skin irritation, homogeneity and grittiness, texture analysis, in vitro release and ex vivo permeation studies. When these evaluation parameters were compared with a marketed gel in respect of all the evaluating tests, the optimized hydrogel was found to be far better formulation than the marketed one.


Author(s):  
Mohammad Muqtader Ahmed ◽  
Farhat Fatima ◽  
Abdul Bari Mohammed

The objective of the study was to formulate olive oil based organogels for the topical application of fluconazole (FLZ), to ensure the efficient delivery of the drug deeper in to the skin layers. Methods: Nine formulations developed by hot-melt method using olive oil, sorbitan monostearate (SMS) and FLZ. Prepared formulations characterized for macro evaluations, pH, spreadibility, viscosity, gel-sol transition, in-vitro diffusion study. Further optimized formulation evaluated for ex-vivo percutaneous permeation, in-vitro antifungal studies and stability studies by similarity index. Results: The results of evaluated parameters ensure the stability and effectiveness of the prepared olive oil based organogels. In-vitro diffusion studied reflects decrease in drug release with increase in surfactant concentration due to increase in viscosity. Moreover, ex-vivo permeation studies revealed that the permeation of FLZ was enhanced for optimized formulations (F6) as compared to the marketed gel formulation. Further, the optimized formulation exhibits the broad zone of inhibition against fungal strains in comparison to control and marketed product during in-vitro antifungal study. Conclusion: The olive oil based organogels formulation shown the enhanced permeation of FLZ from organogel network structure with good antifungal activity as compared to the marketed formulation. Henceforth, the FLZ organogel formulations could be used topically for the effective treatment of fungal infection.


Author(s):  
Shikha Baghel Chauhan ◽  
Tanveer Naved ◽  
Nayyar Parvez

Objective: The purpose of this research was to develop and formulate proniosomal gel drug delivery system of ethinylestradiol and levonorgestrel for antifertility treatment that is capable of efficiently delivering entrapped drug over an extended period of time.Methods: Ethinylestradiol and levonorgestrel are encapsulated in various formulations of proniosomal gel composed of various ratios of span surfactant, cholesterol, soya lecithin, and alcohol as aqueous phase prepared by coacervation-phase separation method. The prepared formulations characterized for drug encapsulation efficiency, size distribution, in vitro release studies, and vesicular stability at different storage conditions were carried. Stability studies for proniosomal gel were carried out for a few weeks. Morphological size and shape of the vesicles are characterized using optical microscopy and scanning electron microscopy (SEM). Stability studies for proniosomal gel were carried out for 3 months.Results: Morphological size and shape of the vesicles are characterized using optical microscopy and SEM, particles are found to be spherical, size of the particles is in the range of 46.4–80.6 nm, and permeation studies showed good control release for prolonged period of time. The encapsulation efficiency of proniosomal gel formulations is in the range of 74–80% and in vitro permeation studies proved that good amount of drug is permeated and has reasonably good stability characteristics as well.Conclusions: The results suggest that proniosomal gel formulations of ethinylestradiol and levonorgestrel may be used for transdermal delivery for antifertility treatment. The dried proniosomal formulation could act as a promising alternative to niosomes.


1999 ◽  
Vol 12 (5) ◽  
pp. 419-429 ◽  
Author(s):  
S. L. Woo ◽  
B. Donzelli ◽  
F. Scala ◽  
R. Mach ◽  
G. E. Harman ◽  
...  

The biocontrol strain P1 of Trichoderma harzianum was genetically modified by targeted disruption of the single-copy ech42 gene encoding for the secreted 42-kDa endochitinase (CHIT42). Stable mutants in which ech42 was interrupted, and unable to produce CHIT42, were obtained and characterized. These mutants lacked the ech42 transcript, the protein, and endochitinase activity in culture filtrates, and they were unable to clear a medium containing colloidal chitin. Other chitinolytic and glucanolytic enzymes expressed during mycoparasitism were not affected by the disruption of ech42. The disrupted mutant D11 grew and sporulated similarly to the wild type. In vitro antifungal activity of the ech42 disruptant culture filtrates against Botrytis cinerea and Rhizoctonia solani was reduced about 40%, compared with wild type; antifungal activity was fully restored by adding an equivalent amount of CHIT42 as secreted by P1. The mutant exhibited the same biocontrol effect against Pythium ultimum as strain P1, but the antagonism against B. cinerea on bean leaves by the mutant was significantly reduced (33% less biocontrol), compared with strain P1. Conversely, the endochitinase-deficient mutant performed better than the wild type (16% improvement of survival) in biocontrol experiments in soil infested with the soilborne fungus R. solani. These results indicate that the antagonistic interaction between the T. harzianum strain and various fungal hosts is based on different mechanisms.


Author(s):  
Kamla Pathak ◽  
Anil Kumar ◽  
Ekta Yadav

The aim of the investigation was to develop and evaluate thermoreversible in situ nasal gel formulations of repaglinide (REP) and to establish correlation between its in vitro release and ex vivo permeation profiles. The solubility of REP was enhanced by preparing solid dispersions (SDs) with hydrophilic carriers (PVP K30/ PEG 6000/ poloxamer 188) in different weight ratios. REP: PVP K30 (1:5) was selected as the optimized SD as it showed highest enhancement in solubility (405%). The optimized SD was characterized by SEM and DSC and incorporated into a blend of thermoreversible and mucoadhesive polymers (poloxamer 407 and carbopol 934 P) by cold technique to form in situ gels (F1-F6). The prepared in-situ gels were evaluated for various pharmacotechnical features and the formulation F3 exhibited least gelling time of 6.1± 0.20, good mucoadhesive property to ensure sufficient residence time at the site of application and a %CDR of 82.25%. The ex vivo permeation characteristics across goat mucosa can be summarized as CDP of 78.7%, flux = 6.80 mg/cm2/h; permeability coefficient of 2.02 mg/h and zero order kinetics. On correlating the CDR profile of F3 with that of its CDP profile, a R2 value of 0.991 (slope= 0.921) was observed. The value of slope approximating one, suggested that almost entire amount of drug released from F3 was capable of permeating across the nasal mucosa, ex-vivo indicating that in-situ nasal gels of REP for systemic action can be successfully developed for the management non-insulin dependent type-II diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document