scholarly journals Traffic Speed Forecast in Adjacent Region between Highway and Urban Expressway: Based on MFD and GRU Model

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Yuan Gao ◽  
Jiandong Zhao ◽  
Ziyan Qin ◽  
Yingzi Feng ◽  
Zhenzhen Yang ◽  
...  

Traffic congestion in the adjacent region between the highway and urban expressway is becoming more and more serious. This paper proposes a traffic speed forecast method based on the Macroscopic Fundamental Diagram (MFD) and Gated Recurrent Unit (GRU) model to provide the necessary traffic guidance information for travelers in this region. Firstly, considering that the road traffic speed is affected by the macroscopic traffic state, the adjacent region between the highway and expressway is divided into subareas based on the MFD. Secondly, the spatial-temporal correlation coefficient is proposed to measure the correlation between subareas. Then, the matrix of regional traffic speed data is constructed. Thirdly, the matrix is input into the GRU prediction model to get the predicted traffic speed. The proposed algorithm’s prediction performance is verified based on the GPS data collected from the adjacent region between Beijing Highways and Expressway.

2020 ◽  
Vol 12 (24) ◽  
pp. 10470
Author(s):  
Haiyan Zhu ◽  
Hongzhi Guan ◽  
Yan Han ◽  
Wanying Li

The adjustment of road toll is an important measure that can alleviate road traffic congestion by convincing car travelers to travel during off-peak times. In order to reduce congestion on the expressway on the first day of a holiday, factors that affect the departure times of holiday travelers must be comprehensively understood to determine the best strategy to persuade car travelers to avoid peak travel times. This paper takes holiday car travelers as the research object and explores the characteristics and rules of departure time choice behavior for different holiday lengths. Based on Utility Maximization Theory, a multinomial logit (MNL) model of departure time choice for a three-day short holiday and a seven-day long holiday was established. Model calibration and elastic analysis were carried out using Revealed Preference/Stated Preference (RP/SP) survey data. Additionally, the influence of the highway toll policy on departure times for long and short holidays was analyzed. The results show that the rate of first-day departures is much higher than that of other departure times for both short and long vacations under the current policy of free holiday passage on highways. Factors such as trip duration, size of the tourist group, the number of visits, travel range, travel time, monthly income, occupation, age and road toll have a significant influence on the departure time decisions of holiday car travelers, and the effect and degree of influence are markedly different for different holiday lengths. The effects of tolls for each departure time and different pricing scenarios on the choice behavior of travelers are different between long and short holidays. Furthermore, the effectiveness of the road toll policy also varies for travelers with different travel distances. This study can provide useful information for the guidance of holiday travelers, the management of holiday tolls on expressways and the formulation of holiday leave time.


2019 ◽  
Vol 9 (4) ◽  
pp. 615 ◽  
Author(s):  
Panbiao Liu ◽  
Yong Zhang ◽  
Dehui Kong ◽  
Baocai Yin

Buses, as the most commonly used public transport, play a significant role in cities. Predicting bus traffic flow cannot only build an efficient and safe transportation network but also improve the current situation of road traffic congestion, which is very important for urban development. However, bus traffic flow has complex spatial and temporal correlations, as well as specific scenario patterns compared with other modes of transportation, which is one of the biggest challenges when building models to predict bus traffic flow. In this study, we explore bus traffic flow and its specific scenario patterns, then we build improved spatio-temporal residual networks to predict bus traffic flow, which uses fully connected neural networks to capture the bus scenario patterns and improved residual networks to capture the bus traffic flow spatio-temporal correlation. Experiments on Beijing transportation smart card data demonstrate that our method achieves better results than the four baseline methods.


2020 ◽  
Vol 156 ◽  
pp. 04008
Author(s):  
Yossyafra Yossyafra ◽  
Nurhuda Fitri ◽  
Rahmat Punama Sidhi ◽  
Yosritzal Yosritzal ◽  
Deni Irda Mazni

There are many cities on the west coast of the Sumatra, which are at high risk of the Tsunami disaster. Regional Regulations on Regional Spatial Planning for each City/ Regency have compiled disaster mitigation by constructing several evacuation roads. This study wants to illustrate: what are the volume of traffic generation and road performance, if there is a Tsunami disaster. The simulation is developed by predicting traffic volume based on parameters, population density, vehicle ownership, land use, and activities in the area around the road. The assessment was carried out on two tsunami evacuation roads in the city of Padang, West Sumatra Province. The results show that the highest traffic volume occurred in the period from 06.30 a.m until 3:00 p.m., during school activities. One of the roads will not be able to accommodate the volume of traffic during a disaster, due to significant traffic congestion. This study shows that: (1) the period of activity and land use are two main parameters, which must be considered in designing tsunami evacuation roads, (2) The degree of saturation ratio and the ratio between the capacity of sections of Tsunami evacuation routes can be proposed as a parameter for assessing the performance of Tsunami evacuation roads in urban areas.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5327 ◽  
Author(s):  
Byoungsuk Ji ◽  
Ellen J. Hong

In this paper, we propose a method for deep-learning-based real-time road traffic predictions using long-term evolution (LTE) access data. The proposed system generates a road traffic speed learning model based on road speed data and historical LTE data collected from a plurality of base stations located within a predetermined radius from the road. Real-time LTE data were the input for the generated learning model in order to predict the real-time speed of traffic. Since the system was developed using a time-series-based road traffic speed learning model based on LTE data from the past, it is possible for it to be used for a road where the environment has changed. Moreover, even on roads where the collection of traffic data is invalid, such as a radio shadow area, it is possible to directly enter real-time wireless communications data into the traffic speed learning model to predict the traffic speed on the road in real time, and in turn, raise the accuracy of real-time road traffic predictions.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2182-2186
Author(s):  
Ling Yan Ge ◽  
Bi Feng Zhu

With the rapid development of urbanization in China and the motorization’s fast pace of high speed as well as the national automobile industry process, many cities in our country have been facing a huge problem - traffic congestion in recent years. And the essence of the problem is the imbalance between road traffic supply and traffic demand in the process of urban development. Aimed at the problem of traffic congestion, this paper based on Hangzhou city’s traffic congestion index of monitoring data from testing platform and statistical data from field survey , studied the Hangzhou east area of road traffic running situation, analyzed the causes of the east area of Hangzhou road congestion, and thus to adjust and optimize the road traffic system of the area, put forward reasonable system solutions and proposals to improve the management level


2019 ◽  
Vol 14 (1) ◽  
pp. 40
Author(s):  
Taufik Setyawan ◽  
Mila Karmilah

The use of land as a trade and service area contributes greatly to the development of urban economic structures, including in the District of Kartasura. Especially Kartasura's market activity which is always developing because it is a place to fulfill primary needs. However, the existence of this market and also the trade and service activities around it are increasingly troubling due to irregularities and disrupting transportation activities around the market. Geographically, Kartasura Subdistrict is quite close to the Surakarta City area (around 10 Km), and Surakarta City has a very rapid and dense development intensity and has a limited development area, so the development of socio-economic activities tends to move towards the Kartasura Sub-District area.Close socio-economic relations with Surakarta City made Kartasura experience rapid development in the growth of new activities along the A. Yani road. Such as education, health, trade and services, industry and office activities. With the growth of new activities along the A Yani road, traffic jams often occur at peak hours. The congestion is due to the mixture between modes of transportation, trade, industry and offices.The purpose of this study is to identify the performance of the A Yani road, to determine the effect of land use on congestion that occurs. To achieve these objectives, the analysis used is quantitative calculations. By comparing the road conditions at peak and non peak hours on the A Yani road. The method used in this study is analyzing the volume of the road (V) A Yani experiencing congestion, analyzing side barriers, speed, road capacity (C) A Yani, and the level of road service (V / C) A Yani. In addition to the quantitative analysis also conduct qualitative analysis to clarify the quantitative analysis that has been done. So that what is a problem on Jalan A Yani can also be analyzed, what are the factors that cause congestion and finally show conclusions and recommendations of problems.Keywords: Land use, Traffic Congestion


Author(s):  
Delina Mshai Mwalimo ◽  
Mary Wainaina ◽  
Winnie Kaluki

This study outlines the Kerner’s 3 phase traffic flow theory, which states that traffic flow occurs in three phases and these are free flow, synchronized flow and wide moving jam phase. A macroscopic traffic model that is factoring road inclination is developed and its features discussed. By construction of the solution to the Rienmann problem, the model is written in conservative form and solved numerically. Using the Lax-Friedrichs method and going ahead to simulate traffic flow on an inclined multi lane road. The dynamics of traffic flow involving cars(fast moving) and trucks(slow moving) on a multi-lane inclined road is studied. Generally, trucks move slower than cars and their speed is significantly reduced when they are moving uphill on an in- clined road, which leads to emergence of a moving bottleneck. If the inclined road is multi-lane then the cars will tend to change lanes with the aim of overtaking the slow moving bottleneck to achieve free flow. The moving bottleneck and lanechange ma- noeuvres affect the dynamics of flow of traffic on the multi-lane road, leading to traffic phase transitions between free flow (F) and synchronised flow(S). Therefore, in order to adequately describe this kind of traffic flow, a model should incorporate the effect of road inclination. This study proposes to account for the road inclination through the fundamental diagram, which relates traffic flow rate to traffic density and ultimately through the anticipation term in the velocity dynamics equation of macroscopic traffic flow model. The features of this model shows how the moving bottleneck and an incline multilane road affects traffic transistions from Free flow(F) to Synchronised flow(S). For a better traffic management and control, proper understanding of traffic congestion is needed. This will help road designers and traffic engineers to verify whether traffic properties and characteristics such as speed(velocity), density and flow among others determines the effectiveness of traffic flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Milan Simunek ◽  
Zdenek Smutny ◽  
Michal Dolezel

The COVID-19 pandemic crisis has impacted numerous areas of people’s work and free-time activities. This article aims to present the main impacts of the COVID-19 movement restrictions on the road traffic in the Czech Republic, measured during the first epidemic wave, i.e., from 12 March to 17 May 2020. The state of emergency was imposed by the Czech government as a de jure measure for coping with the perceived crisis, although the measure eventually resulted only in a quite liberal de facto form of stay-at-home instruction. Unique country-scale traffic data of the first six months of 2020 from 37,002 km of roads, constituting 66% of all roads in the Czech Republic, were collected and analyzed. For the prediction of the prepandemic traffic conditions and their comparison with the measured values in the period of the state of emergency, a long-term traffic speed prediction ensemble model consisting of case-based reasoning, linear regression, and fallback submodels was used. The authors found out that the COVID-19 movement restrictions had a significant impact on the country-wide traffic. Traffic density was reduced considerably in the first three weeks, and the weekly average traffic speed in all road types increased by up to 21%, expectedly due to less crowded roads. The exception was motorways, where a different trend in traffic was found. In sum, during the first three weeks of the state of emergency, people followed government regulations and restrictions and changed their travel behavior accordingly. However, following this period, the traffic gradually returned to the prepandemic state. This occurred three weeks before the state of emergency was terminated. From a behavioral perspective, this article briefly discusses the possible causes of such discrepancies between de jure and de facto pandemic measures, i.e., the governmental communication strategy related to loosening of movement restrictions, media reality, and certain culture-related traits.


Author(s):  
S. AVINASH ◽  
SNEHA MITTRA ◽  
SUDIPTA NAYAN GOGOI ◽  
C. SURESH

Due to the proliferation in the number of vehicles on the road, traffic problems are bound to exist. This is due to the fact that the current transportation infrastructure and car parking facility developed are unable to cope with the influx of vehicles on the road. In India, the situation are made worse by the fact that the roads are significantly narrower compared to the west. Therefore problems such as traffic congestion and insufficient parking space inevitably crops up. In his paper we describe an Intelligent Car Parking System, which identifies the available spaces for parking using sensors, parks the cars in an identified empty space and gets the car back from its parked space without the help of any human personnel. A Human Machine Interface (HMI) helps in entering a unique identification number while entry of any car which helps in searching for the space where the car is parked while exit. An Indraconrol L10 PLC controls the actions of the parking system. The PLC is used to sequence the placing and fetching of the car via DC motors. We have implemented a prototype of the system. The system evaluation demonstrates the effectiveness of our design and implementation of car parking system.


Sign in / Sign up

Export Citation Format

Share Document