scholarly journals The Biomechanical Analysis of Magnitude and Direction of Force by Different Techniques of Thoracic Spinal Manipulation

2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Sunghee Joo ◽  
Junghyun Kim ◽  
Yongwoo Lee ◽  
Changho Song

Background. Spinal manipulation (SM) has been widely recognized and used with success in health care fields for spinal joint dysfunction and pain. SM is a procedure that involves small amplitude manipulative thrusts performed with speed. These forces are complex three-dimensional (3-D) forces delivered to create forces and moments at the joint of interest to cause joint movements. The aim of this study was to conduct a 3-dimensional analysis of the magnitude and direction of the forces transmitted in 2 techniques of thoracic spinal manipulation (TSM). Materials/Methods. Thirty-two healthy participants were recruited from the university community. The physical therapist performed TSM using anterior (A) to posterior (P) and P to A techniques once at each of T3, T7, and T12 spinal levels. The magnitude and direction of the forces transmitted during TSM were sensed by the force plates, and the camera system monitored vertebral motion by tracking motion markers. Results. There were no significant differences on the x-axis while there were significant differences on the y-axis between the measured spinal levels in the P to A technique. There were significant differences found at preload force maximum, preload force minimum, and peak force between T3 and T12 and between T7 and T12 and at peak base force between T7 and T12 on the z-axis. In the A to P technique, there were significant differences in the change of force in measured spinal levels at different axes. Conclusion. These study findings can help therapists better understand the mechanism of TSM and enhance the clinical usefulness of TSM.

Author(s):  
Zahraa E. Hussein ◽  
Marwa M. Bori ◽  
Layla K. Abbas

The article describes a simple and low cost methodology of four-dimensional map creation, based on the main elements of the urban world like such as green ground, buildings, soil, water area and others, which makes it possible to detect the urban progress during a certain period using an open source data of Google Earth and geographical information system. This implies that a study of changes in urban elementrequire an integration of spatial information and corresponding real time, which is referred to as the four-dimensional map. Accordingly, the fourth dimensional (time) was added to the three dimensional spatial information (3 dimensional) study area signifies by the University of Baghdad, Aljadrya Campus. Regarding the article, the study area’s urban progress was considered for Google Earth’s available period of the data set that started from 2002 to 2019 at each of 2002, 2005, 2010 in addition to 2019 before being updated from the field observation. The main goal of this article is to provide an important indicator that can be used to determine the nature of current growth and forecast it in the future. Furthermore, it can be used for solving the problems of negative urban progress, which is what most developing countries are experiencing. Findings show significant changes in the main objects of the study area are represented by increasing each of buildings, green grounds, play grounds by about 40.9%, 65.4% and 30.2% respectively, which are offset by decrease insoil grounds of nearly 20.8%.


2003 ◽  
Vol 40 (3) ◽  
pp. 291-296 ◽  
Author(s):  
D. J. Johnston ◽  
D. T. Millett ◽  
A. F. Ayoub ◽  
M. Bock

Objectives To determine the extent of reproducibility of five facial expressions. Design Thirty healthy Caucasian volunteers (15 males, 15 females) aged 21 to 30 years had 20 landmarks highlighted on the face with a fine eyeliner pencil. Subjects were asked to perform a sequence of five facial expressions that were captured by a three-dimensional camera system. Each expression was repeated after 15 minutes to investigate intrasession expression reproducibility. To investigate intersession expression reproducibility, each subject returned 2 weeks after the first session. A single operator identified 3-dimensional coordinate values of each landmark. A partial ordinary procrustes analysis was used to adjust for differences in head posture between similar expressions. Statistical analysis was undertaken using analysis of variance (linear mixed effects model). Results Intrasession expression reproducibility was least between cheek puffs (1.12 mm) and greatest between rest positions (0.74 mm). The reproducibility of individual landmarks was expression specific. Except for the lip purse, the reproducibility of facial expressions was not statistically different within each of the two sessions. Rest position was most reproducible, followed by lip purse, maximal smile, natural smile, and cheek puff. Subjects did not perform expressions with the same degree of symmetry on each occasion. Female subjects demonstrated significantly better reproducibility with regard to the maximal smile than males (p = .036). Conclusions Under standardized conditions, intrasession expression reproducibility was high. Variation in expression reproducibility between sessions was minimal. The extent of reproducibility is expression specific. Differences in expression reproducibility exist between males and females.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4580
Author(s):  
Francesco Crenna ◽  
Giovanni Battista Rossi ◽  
Marta Berardengo

Biomechanical analysis of human movement is based on dynamic measurements of reference points on the subject’s body and orientation measurements of body segments. Collected data include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filtering is often recommended. Velocity and acceleration signal must be obtained from position/angular measurement records, needing numerical processing effort. In this paper, we propose a comparative filtering method study procedure, based on measurement uncertainty related parameters’ set, based upon simulated and experimental signals. The final aim is to propose guidelines to optimize dynamic biomechanical measurement, considering the measurement uncertainty contribution due to the processing method. Performance of the considered methods are examined and compared with an analytical signal, considering both stationary and transient conditions. Finally, four experimental test cases are evaluated at best filtering conditions for measurement uncertainty contributions.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3887
Author(s):  
Watcharapong Pudkon ◽  
Chavee Laomeephol ◽  
Siriporn Damrongsakkul ◽  
Sorada Kanokpanont ◽  
Juthamas Ratanavaraporn

Three-dimensional (3D) printing is regarded as a critical technology in material engineering for biomedical applications. From a previous report, silk fibroin (SF) has been used as a biomaterial for tissue engineering due to its biocompatibility, biodegradability, non-toxicity and robust mechanical properties which provide a potential as material for 3D-printing. In this study, SF-based hydrogels with different formulations and SF concentrations (1–3%wt) were prepared by natural gelation (SF/self-gelled), sodium tetradecyl sulfate-induced (SF/STS) and dimyristoyl glycerophosphorylglycerol-induced (SF/DMPG). From the results, 2%wt SF-based (2SF) hydrogels showed suitable properties for extrusion, such as storage modulus, shear-thinning behavior and degree of structure recovery. The 4-layer box structure of all 2SF-based hydrogel formulations could be printed without structural collapse. In addition, the mechanical stability of printed structures after three-step post-treatment was investigated. The printed structure of 2SF/STS and 2SF/DMPG hydrogels exhibited high stability with high degree of structure recovery as 70.4% and 53.7%, respectively, compared to 2SF/self-gelled construct as 38.9%. The 2SF/STS and 2SF/DMPG hydrogels showed a great potential to use as material for 3D-printing due to its rheological properties, printability and structure stability.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


Sign in / Sign up

Export Citation Format

Share Document