scholarly journals Couple Stress Hybrid Nanofluid Flow through a Converging-Diverging Channel

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Malik Zaka Ullah ◽  
Dina Abuzaid ◽  
M. Asma ◽  
Abdul Bariq

This research work is aimed at scrutinizing the mathematical model for the hybrid nanofluid flow in a converging and diverging channel. Titanium dioxide and silver are considered solid nanoparticles while blood is considered as a base solvent. The couple stress fluid model is essentially used to describe the blood flow. The radiation terminology is also included in the energy equation for the sustainability of drug delivery. The aim is to link the recent study with the applications of drug delivery. It is well-known from the available literature that the combination of TiO 2 with any other metal can vanish more cancer cells than TiO 2 separately. Governing equations are altered into the system of nonlinear coupled equations the similarity variables. The Homotopy Analysis Method (HAM) analytical approach is applied to obtain the preferred solution. The influence of the modeled parameters has been calculated and displayed. The confrontation to wall shear stress and hybrid nanofluid flow growth as the couple stress parameter rises which improves the stability of the base fluid (blood). The percentage (%) increase in the heat transfer rate with the variation of nanoparticle volume fraction is also calculated numerically and discussed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Wajdi Alghamdi ◽  
Saleem Nasir ◽  
Anwar Saeed ◽  
...  

AbstractIn this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time-dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, $${\text{TiO}}_{2} \,\,{\text{and}}\,\,{\text{Ag}}$$ TiO 2 and Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Optimal Homotopy Analysis Method is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. Detailed research is also performed to investigate the influences of relevant constraints on the rates, momentum and heat transport for both $${\text{TiO}}_{2} + {\text{Ag}} + Blood$$ TiO 2 + Ag + B l o o d and $${\text{TiO}}_{2} + Blood$$ TiO 2 + B l o o d . One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in the case of the hybrid nanofluid enhances the thermal conductivity from 5.8 to 11.947% and for the same value of the nanoparticle volume fraction in the case of nanofluid enhance the thermal conductivity from 2.576 to 5.197%.


Author(s):  
Sachin Shaw ◽  
P. V. S. N. Murthy

The present investigation deals with magnetic drug targeting in a microvessel of radius 5 μm using two-phase fluid model. The microvessel is divided into the endothelial glycocalyx layer wherein the blood obeys Newtonian character and a core region wherein the blood obeys the non-Newtonian Casson fluid character. The carrier particles, bound with nanoparticles and drug molecules, are injected into the vascular system upstream from the malignant tissue and are captured at the tumor site using a local applied magnetic field near the tumor position. Brinkman model is used to characterize the permeable nature of the inner wall of the microvessel. The expressions for the fluidic force for the carrier particle traversing in the two-phase fluid in the microvessel and the magnetic force due to the external magnetic field are obtained. Several factors that influence the magnetic targeting of the carrier particles in the microvasculature, such as the size and shape of the carrier particle, the volume fraction of embedded magnetic nanoparticles, and the distance of separation of the magnet from the axis of the microvessel, are considered in the present problem. The system of coupled equations is solved to obtain the trajectories of the carrier particle in the noninvasive case.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Abdelaziz Alsubie ◽  
Poom Kumam ◽  
Saleem Nasir ◽  
Taza Gul ◽  
...  

AbstractIn this investigation, heat transportation together with irreversibility analysis for the flow of couple stress hybrid nanofluid past over a stretching surface is considered. The innovative characteristics and aims of this work are to note that the transportation heat couple stress model involves EMHD, viscous dissipation, Joule heating, and heat absorption, and omission. The hybrid nanofluid is prepared due to the suspension of the solid nanoparticles of the SWCNTs and MWCNTs in pure human blood. This mathematical model is an appropriate model for biological advantages including testing of human blood for drug deliveries to various parts of the human body. Particularly, the Prandtl number used for the blood is 21 and very large as compared to the other base fluids. Necessary modifications are used to translate the defining partial differential equations and boundary conditions into a layout that can be computed. To obtain mathematical approximations for the resulting scheme of nonlinear differential equations, the innovative homotopy analysis method (HAM) is used. The explanation for velocity, energy, and entropy are exposed and the flow against various influential factors ($$E,\;M,\;k,\;Q,\;S\;{\text{and}}\;Ec$$ E , M , k , Q , S and E c ) is discussed graphically. The numerical values are calculated and summarized for dimensionless $$C_{{fx}} \;{\text{and}}\;Nu_{x} .$$ C fx and N u x . In addition, the current study is compared for various values of $$\Pr$$ Pr to that published literature and an impressive agreement in terms of finding is reported. It has also been noticed that the $$M$$ M and $$E$$ E factors retard the hybrid nanofluid flow, while the temperature of fluid becomes upsurges by the rise in these factors. 11.95% enhancement in the heat transfer rate has been attained using the hybrid nanofluids.


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 668 ◽  
Author(s):  
Umer Farooq ◽  
Muhammad Afridi ◽  
Muhammad Qasim ◽  
D. Lu

The present research work explores the effects of suction/injection and viscous dissipation on entropy generation in the boundary layer flow of a hybrid nanofluid (Cu–Al2O3–H2O) over a nonlinear radially stretching porous disk. The energy dissipation function is added in the energy equation in order to incorporate the effects of viscous dissipation. The Tiwari and Das model is used in this work. The flow, heat transfer, and entropy generation analysis have been performed using a modified form of the Maxwell Garnett (MG) and Brinkman nanofluid model for effective thermal conductivity and dynamic viscosity, respectively. Suitable transformations are utilized to obtain a set of self-similar ordinary differential equations. Numerical solutions are obtained using shooting and bvp4c Matlab solver. The comparison of solutions shows excellent agreement. To examine the effects of principal flow parameters like suction/injection, the Eckert number, and solid volume fraction, different graphs are plotted and discussed. It is concluded that entropy generation inside the boundary layer of a hybrid nanofluid is high compared to a convectional nanofluid.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Najiyah Safwa Khashi'ie ◽  
Ioan Pop ◽  
Norfifah Bachok ◽  
...  

Purpose The purpose of this paper is to numerically investigate the hybrid nanofluid flow with the imposition of magnetohydrodynamic (MHD) and radiation effects alongside the convective boundary conditions over a permeable stretching/shrinking surface. Design/methodology/approach The mathematical model is formulated in the form of partial differential equations (PDEs) and are then transformed into the form of ordinary differential equations (ODEs) by using the similarity variables. The deriving ODEs are solved numerically by using the bvp4c solver in MATLAB software. Stability analysis also has been performed to determine the stable solution among the dual solutions obtain. For method validation purposes, a comparison of numerical results has been made with the previous studies. Findings The flow and the heat transfer of the fluid at the boundary layer are described through the plot of the velocity profile, temperature profile, skin friction coefficient and local Nusselt number that are presented graphically. Dual solutions are obtained, but only the first solution is stable. For the realizable solution at the shrinking surface, the proliferation of nanoparticle volume fraction (copper) and magnetic (magnetohydrodynamics) parameters can impede the boundary layer separation. Also, Biot number could enhance the temperature profile and the heat transfer rate at the shrinking surface region. The incrementation of 0.1% of Biot number has enhanced the heat transfer rate by approximately 0.1% and the incrementation of 0.5% volume fraction for copper has reduced the heat transfer rate by approximately 0.17%. Originality/value The presented model and numerical results are original and new. It can be used as a future reference for further investigation and related practical application. The main contribution of this investigation includes giving the initial prediction and providing the numerical data for the other researchers for their future reference regarding the impacts of nanoparticles volumetric concentration towards the main physical quantities of interest in the presence of magnetic and radiation parameters with the convective boundary conditions.


Author(s):  
Jayati Tripathi ◽  
Buddakkagari Vasu ◽  
Osman Anwar Bég ◽  
Rama Subba Reddy Gorla

Two-dimensional laminar hemodynamics through a diseased artery featuring an overlapped stenosis was simulated theoretically and computationally. This study presented a mathematical model for the unsteady blood flow with hybrid biocompatible nanoparticles (Silver and Gold) inspired by drug delivery applications. A modified Tiwari-Das volume fraction model was adopted for nanoscale effects. Motivated by the magneto-hemodynamics effects, a uniform magnetic field was applied in the radial direction to the blood flow. For realistic blood behavior, Reynolds’ viscosity model was applied in the formulation to represent the temperature dependency of blood. Fourier’s heat conduction law was assumed and heat generation effects were included. Therefore, the governing equations were an extension of the Navier–Stokes equations with magneto-hydrodynamic body force included. The two-dimensional governing equations were transformed and normalized with appropriate variables, and the mild stenotic approximation was implemented. The strongly nonlinear nature of the resulting dimensionless boundary value problem required a robust numerical method, and therefore the FTCS algorithm was deployed. Validation of solutions for the particular case of constant viscosity and non-magnetic blood flow was included. Using clinically realistic hemodynamic data, comprehensive solutions were presented for silver, and silver-gold hybrid mediated blood flow. A comparison between silver and hybrid nanofluid was also included, emphasizing the use of hybrid nanoparticles for minimizing the hemodynamics. Enhancement in magnetic parameter decelerated the axial blood flow in stenotic region. Colored streamline plots for blood, silver nano-doped blood, and hybrid nano-doped blood were also presented. The simulations were relevant to the diffusion of nano-drugs in magnetic targeted treatment of stenosed arterial diseases.


2020 ◽  
Author(s):  
Taza Gul ◽  
Basit Ali ◽  
Saleem Nasir ◽  
Muhammad Jawad ◽  
Anwar Saeed

Abstract In this new world of fluid technologies, hybrid nanofluid has become a productive subject of research among scientists for its potential thermal features and abilities, which provides an excellent result as compared to nanofluids in growing the rate of heat transport. Our purpose here is to introduce the substantial influences of magnetic field on 2D, time dependent and stagnation point inviscid flow of couple stress hybrid nanofluid around a rotating sphere with base fluid is pure blood, TiO2, and, Ag as the nanoparticles. To translate the governing system of partial differential equations and the boundary conditions relevant for computation, some suitable transformations are implemented. To obtain the analytical estimations for the corresponding system of differential expression, the innovative Homotopy Analysis Method (HAM) approach is used. The characteristics of hybrid nanofluid flow patterns, including temperature, velocity and concentration profiles are simulated and analyzed in detail due to the variation in the evolving variables. A detailed research is also performed in order to investigate the influences of relevant constraints on the rates, momentum and heat transport for both TiO2 + Ag + Blood and TiO2 + Blood. One of the many outcomes of this analysis, it is observed that increasing the magnetic factor will decelerate the hybrid nanofluid flow velocity and improve the temperature profile. It may also be demonstrated that by increasing the Brownian motion factor, significant improvement can be made in the concentration field of hybrid nanofluid. The increase in the nanoparticle volume fraction from 0.01 to 0.02 in case of the hybrid nanofluid enhance the thermal conductivity from 5.8% to 11.947% and for the same value of the nanoparticle volume fraction in case of nanofluid enhance the thermal conductivity from 2.576% to 5.197%.


CFD letters ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1-19
Author(s):  
Yuan Ying Teh ◽  
Adnan Ashgar

A three-dimensional hybrid nanofluid flow over a stretching/shrinking sheet is numerically studied. The hybrid nanofluid being considered in this study used water as the base fluid and mixed with two types of solid nanoparticles, namely alumina (Al2O3) and copper (Cu). The main focus of the current study is to examine the effect of magnetic field, Joule heating, and rotating sheet on the velocity, and temperature profiles. In addition, the impact of suction and stretching sheet on the variations of reduced skin friction, , and reduced heat transfer are studied as well. The fluid flow and heat transfer problem presented in this study is governed by a system of nonlinear partial differential equations (PDEs), which is then transformed into the corresponding system of high order nonlinear ordinary differential equations (ODEs) using similarity variables. The resulting system of higher order nonlinear ODEs is solved numerically using a boundary value solver known as bvp4c, which operates on the MATLAB computational platform. Results revealed that dual solutions exist for shrinking sheet while unique solutions are observed for stretching sheet with various values of Cu nanoparticles volume fraction and magnetic parameter. Dual solutions also exist for the value of the suction parameter greater than its critical point with various values of Cu nanoparticles volume fraction. Velocity profile of the hybrid nanofluid increases alongside with the value of magnetic parameter but declination was observed in the profile of and temperature, for both solutions as the value of Cu nanoparticles volume fraction increases. When the value of rotational parameter increases, both velocity and profiles increase for both solutions. This indicates that the momentum boundary layer thickness increases with increasing values of for both solutions, but thermal boundary layer thickness decreases for the first solution and increases for the second solution. Finally, an increment in the value of Eckert number causes the temperature of the hybrid nanofluid to rise as well for both first and second solutions.


Sign in / Sign up

Export Citation Format

Share Document