scholarly journals Prediction of BlastInduced Ground Vibration (BIGV) of Metro Construction Using Difference Evolution AlgorithmOptimized Gaussian Process (DE-GP)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Tengfei Jiang ◽  
Annan Jiang ◽  
Shuai Zheng ◽  
Mengfei Xu

Rock blasting often has an irreversible impact on the surrounding environment and threatens the safety of life and property. Therefore, accurate prediction of blast-induced ground vibration (BIGV) is a prerequisite for safe construction. In view of the fact that traditional blasting peak particle velocity (PPV) empirical formulas cannot be accurately predicted, this study selected 88 sets of blasting monitoring data, based on distance from the blast-face, maximum charge per delay, total charge, hole depth, spacing, burden, stemming length, and powder factor being used as input variables and PPV being used as output variable to characterize BIGV. First, a nonlinear mapping relationship between input variables and output variable is established through the Gaussian process (GP). The differential evolution algorithm (DE) is used to optimize the hyperparameters σf, σn, and l of the GP, and a blasting PPV model based on the DE-GP is constructed. The proposed model is compared with the empirical formulas, least square support vector machine (LSSVM), artificial neural network (ANN), and GP model, and its prediction performance is evaluated by statistical indicators such as root mean square error (RMSE). Finally, the cosine amplitude method (CAM) is used to analyze the sensitivity of blasting parameters. The results show that the DE-GP algorithm for blasting vibration velocity prediction has higher precision and accuracy, which is significantly better than other models, and is the closest to the measured PPV. Distance from the blast-face, total charge, and maximum charge per delay have a greater impact on the prediction of PPV, while stemming length and powder factor have a smaller impact on the prediction of PPV. The DE-GP model proposed by this research has certain reference value for the prediction and control of PPV in blasting construction.

2019 ◽  
Vol 25 (9) ◽  
pp. 1585-1595 ◽  
Author(s):  
Shida Xu ◽  
Yuanhui Li ◽  
Jianpo Liu ◽  
Fengpeng Zhang

Drilling and blasting remains the primary method of rock fragmentation in metal mining. However, blasting vibration can adversely affect the stability of the rock. Therefore, prediction of blasting vibration is essential in the mining industry. This paper proposes a combination of principal component analysis (PCA) and support vector machine (SVM) model to predict blasting vibration. Here, PCA was used to simplify the inputs of the SVM. Relative location of the monitoring point to blasting source, total charge, maximum charge per delay, number of delays, burden, spacing, height, and horizontal distance were used as inputs of the combination model (PCA-SVM), while peak particle velocity was set as output. The PCA-SVM model was successfully employed to adjust blasting parameters of the No. 21 stope in Hongtoushan Copper Mine. Two blasting data sets were used to compare the capability of the PCA-SVM model with conventional predictors. The results prove the superiority of the PCA-SVM model in estimating blasting vibration.


Author(s):  
Aref Alipour ◽  
Mojtaba Mokhtarian-Asl ◽  
Mostafa Asadizadeh

Mine tunnels, short transportation tunnels, and hydro-power plan underground spaces excavations are carried out based on Drilling and Blasting (D&B) method. Determination of specific charge in tunnel D&B, according to the involved parameters, is very significant to present an appropriate D&B design. Suitable explosive charge selection and distribution lead to reduced undesirable effects of D&B such as inappropriate pull rate, over-break, under-break, unauthorized ground vibration, air blast, and fly rock. So far, different models are presented to estimate specific charge in tunnel blasting. In this study, 332 data sets, including geomechanical characteristics, D&B, and specific charge are gathered from 33 tunnels. The data are related to three dams and hydropower plans in Iran (Gotvand, Masjed-Solayman, and Siah-Bishe). Specific charge is modeled in inclined hole cut drilling pattern. In this regard, Support Vector Machine (SVM) algorithm based on polynomial Kernel function is used as a tool for modeling. Rock Quality Designation (RQD) index, Uniaxial Compressive Strength (UCS), tunnel cross-section area, maximum depth of blast hole, and blast hole coupling ratio are considered as independent input variables and the specific charge is considered as a dependent output variable. The modeling results confirm the acceptable performance of SVM in specific charge estimation with minimum error.


2011 ◽  
Vol 18 (9) ◽  
pp. 1322-1329 ◽  
Author(s):  
M Mohammadnejad ◽  
R Gholami ◽  
A Ramezanzadeh ◽  
ME Jalali

One of the major environmental concerns related to blasting operation in mining and civil engineering projects is ground vibration. The ground parameters should be taken into account by the prediction models, especially if the ground conditions have variable characters. In a blasting environment, this is usually possible by using an empirical method. However, in this study, the application of a novel artificial method, called a ‘Support Vector Machine’ (SVM), has been offered for the prediction of blast-induced ground vibration by taking into consideration the maximum charge per delay and the distance between the blast face and monitoring point. Two limestone quarries have been studied through this research. The results clearly show that the SVM can be used as a reliable predictor technique to predict the vibration level with a correlation coefficient of 0.944 which has been obtained by comparing measured and predicted values.


2021 ◽  
Vol 11 (9) ◽  
pp. 4055
Author(s):  
Mahdi S. Alajmi ◽  
Abdullah M. Almeshal

Machining process data can be utilized to predict cutting force and optimize process parameters. Cutting force is an essential parameter that has a significant impact on the metal turning process. In this study, a cutting force prediction model for turning AISI 4340 alloy steel was developed using Gaussian process regression (GPR), support vector machines (SVM), and artificial neural network (ANN) methods. The GPR simulations demonstrated a reliable prediction of surface roughness for the dry turning method with R2 = 0.9843, MAPE = 5.12%, and RMSE = 1.86%. Performance comparisons between GPR, SVM, and ANN show that GPR is an effective method that can ensure high predictive accuracy of the cutting force in the turning of AISI 4340.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4523 ◽  
Author(s):  
Carlos Cabo ◽  
Celestino Ordóñez ◽  
Fernando Sáchez-Lasheras ◽  
Javier Roca-Pardiñas ◽  
and Javier de Cos-Juez

We analyze the utility of multiscale supervised classification algorithms for object detection and extraction from laser scanning or photogrammetric point clouds. Only the geometric information (the point coordinates) was considered, thus making the method independent of the systems used to collect the data. A maximum of five features (input variables) was used, four of them related to the eigenvalues obtained from a principal component analysis (PCA). PCA was carried out at six scales, defined by the diameter of a sphere around each observation. Four multiclass supervised classification models were tested (linear discriminant analysis, logistic regression, support vector machines, and random forest) in two different scenarios, urban and forest, formed by artificial and natural objects, respectively. The results obtained were accurate (overall accuracy over 80% for the urban dataset, and over 93% for the forest dataset), in the range of the best results found in the literature, regardless of the classification method. For both datasets, the random forest algorithm provided the best solution/results when discrimination capacity, computing time, and the ability to estimate the relative importance of each variable are considered together.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Pijush Samui

The main objective of site characterization is the prediction of in situ soil properties at any half-space point at a site based on limited tests. In this study, the Support Vector Machine (SVM) has been used to develop a three dimensional site characterization model for Bangalore, India based on large amount of Standard Penetration Test. SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing ε-insensitive loss function. The database consists of 766 boreholes, with more than 2700 field SPT values () spread over 220 sq km area of Bangalore. The model is applied for corrected () values. The three input variables (, , and , where , , and are the coordinates of the Bangalore) were used for the SVM model. The output of SVM was the data. The results presented in this paper clearly highlight that the SVM is a robust tool for site characterization. In this study, a sensitivity analysis of SVM parameters (σ, , and ε) has been also presented.


2021 ◽  
Vol 11 (4) ◽  
pp. 1492
Author(s):  
Hanita Daud ◽  
Muhammad Naeim Mohd Aris ◽  
Khairul Arifin Mohd Noh ◽  
Sarat Chandra Dass

Seabed logging (SBL) is an application of electromagnetic (EM) waves for detecting potential marine hydrocarbon-saturated reservoirs reliant on a source–receiver system. One of the concerns in modeling and inversion of the EM data is associated with the need for realistic representation of complex geo-electrical models. Concurrently, the corresponding algorithms of forward modeling should be robustly efficient with low computational effort for repeated use of the inversion. This work proposes a new inversion methodology which consists of two frameworks, namely Gaussian process (GP), which allows a greater flexibility in modeling a variety of EM responses, and gradient descent (GD) for finding the best minimizer (i.e., hydrocarbon depth). Computer simulation technology (CST), which uses finite element (FE), was exploited to generate prior EM responses for the GP to evaluate EM profiles at “untried” depths. Then, GD was used to minimize the mean squared error (MSE) where GP acts as its forward model. Acquiring EM responses using mesh-based algorithms is a time-consuming task. Thus, this work compared the time taken by the CST and GP in evaluating the EM profiles. For the accuracy and performance, the GP model was compared with EM responses modeled by the FE, and percentage error between the estimate and “untried” computer input was calculated. The results indicate that GP-based inverse modeling can efficiently predict the hydrocarbon depth in the SBL.


Author(s):  
S. Rajintha. A. S. Gunawardena ◽  
Fei He ◽  
Ptolemaios Sarrigiannis ◽  
Daniel J. Blackburn

AbstractIn this work, nonlinear temporal features from multi-channel EEGs are used for the classification of Alzheimer’s disease patients from healthy individuals. This was achieved by temporal manifold learning using Gaussian Process Latent Variable Models (GPLVM) as a nonlinear dimensionality reduction technique. Classification of the extracted features was undertaken using a nonlinear Support Vector Machine. Comparisons were made against the linear counterpart, Principle Component Analysis while exploring the effect of the time window or EEG epoch length used. It was demonstrated that temporal manifold learning using GPLVM is better in extracting features that attain high separability and prediction accuracy. This work aims to set the significance of using GPLVM temporal manifold learning for EEG feature extraction in the classification of Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document