scholarly journals Study on Pressure Relief Effect and Rock Failure Characteristics with Different Borehole Diameters

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shiwei Liang ◽  
Long Zhang ◽  
Di Ge ◽  
Qiong Wang

Rock burst is a common tunnel and mine dynamic disaster, especially for deep buried tunnels, which often leads to tunnel construction delay and even induces tunnel collapse and subsidence of strata. Rock drilling is one of the effective pressure relief methods to prevent these disasters. In order to study the influence of borehole diameter on rock mass pressure relief effect, indoor acoustic emission characteristics and numerical simulation of rock samples with different borehole diameter were studied. The research result shows that with the increase in borehole diameter, the effect of borehole pressure relief is better. Different borehole diameters do not change the overall trend of acoustic emission evolution, but it will lead to different acoustic emission count characteristics of rock damage and failure, especially the maximum acoustic emission count characteristics and corresponding strain values. The existence of drilling will lead to the failure stress of rock in advance. Moreover, the existence of drilling causes a great change in the failure mode of the specimen.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Chao Peng ◽  
Wanrong Liu

Rock burst is one of the disaster accidents that can easily happen in rock cavern engineering. At present, one of the most commonly used methods to control rock burst is borehole pressure relief technology. In this paper, the influence of drilling layout schemes on the pressure relief effect of surrounding rock mass is systematically studied. The research results show that the strength reduction degree, AE evolution characteristics, failure modes of rock samples with different borehole positions, boreholes spacing, boreholes dip angles, and boreholes layout forms are different. The strength reduction degree of rock sample with an inclined arrangement form is the largest, followed by the arrangement form being up three-flower layout or down three-flower layout. Using the inclined layout and three-flower layout can achieve better pressure relief effect of the surrounding rock mass. The research results are beneficial to the rock burst of surrounding rock of the cavern. The acoustic emission can effectively monitor the stability of the surrounding rock of the cavern. However, the threshold value and the occurrence time of the acoustic emission of the cavern instability changed after the cavern surrounding rock is drilled holes. If the borehole is arranged at the surrounding rock mass, the occurrence time of the cavern instability may be advanced.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pei Zhang ◽  
Yanpeng He ◽  
Zhimeng Sun ◽  
Dong Yue

In this paper, the parallel-joint rock column model is established based on PFC software, and the effects of different joint positions on the mechanical properties, acoustic emission characteristics, and damage evolution characteristics of rock columns are analyzed. In the PFC models, the intact rock is simulated by parallel-bond model, and the joints are simulated by flat-joint contact model. The research result shows that on the whole, when the joint is outside the rock pillar, the UCS of the rock pillar is higher than that of the joint inside the rock pillar, while the elastic modulus is less than that of rock pillar with joint inside. The evolution characteristics of acoustic emission of rock pillars at different joint positions are basically the same. However, the maximum value of acoustic emission events and corresponding deformation of rock pillars at different joint positions are different. The damage of jointed rock mass can generally show three stages: no damage, slow damage increase, and sharp damage increase.


2014 ◽  
Vol 501-504 ◽  
pp. 1757-1760
Author(s):  
Yi Hai Zhang ◽  
Yuan Li ◽  
Yan Zhang

This is accomplished by a variety of indoor rock mechanics experiments and experimental sound emission, taking Chengde area of Hebei Province the tunnel rock made of rock as research object to simulate various loading rock failure process. To analysis the data obtained of acoustic emission and Dynamics in the process obtaining the characteristic parameters of rock failure process in order to Monitor and Forecast. Through the three axial compression test and the process of acoustic emission signal acquisition discussed the relation between the mechanical parameters of rock acoustic emission parameters of stress. The characteristic parameters of acoustic emission signals with stress and time change through analyzing the acoustic Emission characteristics of each stage in the process of rock failure provide the basis for the prediction of rock burst.


2013 ◽  
Vol 74 (6) ◽  
pp. 845-849 ◽  
Author(s):  
Weiwei Xu ◽  
Zhounian Lai ◽  
Dazhuan Wu ◽  
Leqin Wang

2021 ◽  
Vol 13 (8) ◽  
pp. 4412
Author(s):  
Houqiang Yang ◽  
Nong Zhang ◽  
Changliang Han ◽  
Changlun Sun ◽  
Guanghui Song ◽  
...  

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.


Sign in / Sign up

Export Citation Format

Share Document