scholarly journals Factors Identification and Prediction for Mind Wandering Driving Using Machine Learning

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ciyun Lin ◽  
Hongli Zhang ◽  
Bowen Gong ◽  
Dayong Wu

Traffic safety is affected by many complex factors. Mind wandering (MW) is a fatal cause affecting driving safety and is hard to be detected and prevented due to its uncertain and complex occurrence mechanism. The aim of this study was to propose a framework for analyzing and predicting MW based on readily available driving status data. The data used in this study are the single-trip information collected by the questionnaire, which includes drivers’ personal characteristics, contextual information in which MW occurs, and in-vehicle environmental factors. After investigating the extent of factors that influence MW, these chosen factors are used to forecast MW. Based on these results, we select factors reliable to be obtained in real life to forecast MW. To verify that the new factors explored are useful in improving the forecast accuracy, the compared analysis is conducted with the results found by our approach and the existing approaches. We compare results obtained by four machine-learning-enabled forecasting approaches on a real-life data set. The result shows that the factors found in this paper can significantly improve forecast accuracy. The confusion matrix, ROC curves, and AUC are conducted, and the performance of the gradient boosting decision tree algorithm is better than other forecast approaches. The importance rankings of most factors obtained by the Gradient Boosting Decision Tree and questionnaire are the same.

Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 499 ◽  
Author(s):  
Iqbal H. Sarker ◽  
Yoosef B. Abushark ◽  
Asif Irshad Khan

This paper mainly formulates the problem of predicting context-aware smartphone apps usage based on machine learning techniques. In the real world, people use various kinds of smartphone apps differently in different contexts that include both the user-centric context and device-centric context. In the area of artificial intelligence and machine learning, decision tree model is one of the most popular approaches for predicting context-aware smartphone usage. However, real-life smartphone apps usage data may contain higher dimensions of contexts, which may cause several issues such as increases model complexity, may arise over-fitting problem, and consequently decreases the prediction accuracy of the context-aware model. In order to address these issues, in this paper, we present an effective principal component analysis (PCA) based context-aware smartphone apps prediction model, “ContextPCA” using decision tree machine learning classification technique. PCA is an unsupervised machine learning technique that can be used to separate symmetric and asymmetric components, and has been adopted in our “ContextPCA” model, in order to reduce the context dimensions of the original data set. The experimental results on smartphone apps usage datasets show that “ContextPCA” model effectively predicts context-aware smartphone apps in terms of precision, recall, f-score and ROC values in various test cases.


2021 ◽  
Author(s):  
Huei-Ru Lin ◽  
Koki Fujiwara ◽  
Minoru Sasaki ◽  
Ko Ishiyama ◽  
Shino Ikeda-Sonoda ◽  
...  

AbstractObjectiveThe purpose of the study was to develop machine learning models using data from long-term care (LTC) insurance claims and care needs certifications to predict the individualized future care needs of each older adult.MethodsWe collected LTC insurance-related data in the form of claims and care needs certification surveys from a municipality of Kanagawa Prefecture from 2009 to 2018. We used care needs certificate applications for model generation and the validation sample to build gradient boosting decision tree (GBDT) models to classify if 1) the insured’s care needs either remained stable or decreased or 2) the insured’s care needs increased after three years. The predictive model was trained and evaluated via k-fold cross-validation. The performance of the predictive model was observed in its accuracy, precision, recall, F1 score, area under the receiver-operator curve, and confusion matrix.ResultsLong-term care certificate applications and claim data from 2009–2018 were associated with 92,239 insureds with a mean age of 86.1 years old at the time of application, of whom 67% were female. The classifications of increase in care needs after three years were predicted with AUC of 0.80.ConclusionsMachine learning is a valuable tool for predicting care needs increases in Japan’s LTC insurance system, which can be used to develop more targeted and efficient interventions to proactively reduce or prevent further functional deterioration, thereby helping older adults maintain a better quality of life.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


Author(s):  
Maicon Herverton Lino Ferreira da Silva Barros ◽  
Geovanne Oliveira Alves ◽  
Lubnnia Morais Florêncio Souza ◽  
Élisson da Silva Rocha ◽  
João Fausto Lorenzato de Oliveira ◽  
...  

Tuberculosis (TB) is an airborne infectious disease caused by organisms in the Mycobacterium tuberculosis (Mtb) complex. In many low and middle-income countries, TB remains a major cause of morbidity and mortality. Once a patient has been diagnosed with TB, it is critical that healthcare workers make the most appropriate treatment decision given the individual conditions of the patient and the likely course of the disease based on medical experience. Depending on the prognosis, delayed or inappropriate treatment can result in unsatisfactory results including the exacerbation of clinical symptoms, poor quality of life, and increased risk of death. This work benchmarks machine learning models to aid TB prognosis using a Brazilian health database of confirmed cases and deaths related to TB in the State of Amazonas. The goal is to predict the probability of death by TB thus aiding the prognosis of TB and associated treatment decision making process. In its original form, the data set comprised 36,228 records and 130 fields but suffered from missing, incomplete, or incorrect data. Following data cleaning and preprocessing, a revised data set was generated comprising 24,015 records and 38 fields, including 22,876 reported cured TB patients and 1,139 deaths by TB. To explore how the data imbalance impacts model performance, two controlled experiments were designed using (1) imbalanced and (2) balanced data sets. The best result is achieved by the Gradient Boosting (GB) model using the balanced data set to predict TB-mortality, and the ensemble model composed by the Random Forest (RF), GB and Multi-layer Perceptron (MLP) models is the best model to predict the cure class.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3092 ◽  
Author(s):  
Shih-Hsiung Liang ◽  
Bruno Andreas Walther ◽  
Bao-Sen Shieh

Background Biological invasions have become a major threat to biodiversity, and identifying determinants underlying success at different stages of the invasion process is essential for both prevention management and testing ecological theories. To investigate variables associated with different stages of the invasion process in a local region such as Taiwan, potential problems using traditional parametric analyses include too many variables of different data types (nominal, ordinal, and interval) and a relatively small data set with too many missing values. Methods We therefore used five decision tree models instead and compared their performance. Our dataset contains 283 exotic bird species which were transported to Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction success); of these 95 introduced species, 36 species reproduced in the field of Taiwan successfully (establishment success). For each species, we collected 22 variables associated with human selectivity and species traits which may determine success during the introduction stage and establishment stage. For each decision tree model, we performed three variable treatments: (I) including all 22 variables, (II) excluding nominal variables, and (III) excluding nominal variables and replacing ordinal values with binary ones. Five performance measures were used to compare models, namely, area under the receiver operating characteristic curve (AUROC), specificity, precision, recall, and accuracy. Results The gradient boosting models performed best overall among the five decision tree models for both introduction and establishment success and across variable treatments. The most important variables for predicting introduction success were the bird family, the number of invaded countries, and variables associated with environmental adaptation, whereas the most important variables for predicting establishment success were the number of invaded countries and variables associated with reproduction. Discussion Our final optimal models achieved relatively high performance values, and we discuss differences in performance with regard to sample size and variable treatments. Our results showed that, for both the establishment model and introduction model, the number of invaded countries was the most important or second most important determinant, respectively. Therefore, we suggest that future success for introduction and establishment of exotic birds may be gauged by simply looking at previous success in invading other countries. Finally, we found that species traits related to reproduction were more important in establishment models than in introduction models; importantly, these determinants were not averaged but either minimum or maximum values of species traits. Therefore, we suggest that in addition to averaged values, reproductive potential represented by minimum and maximum values of species traits should be considered in invasion studies.


2021 ◽  
Author(s):  
Mostafa Sa'eed Yakoot ◽  
Adel Mohamed Salem Ragab ◽  
Omar Mahmoud

Abstract Well integrity has become a crucial field with increased focus and being published intensively in industry researches. It is important to maintain the integrity of the individual well to ensure that wells operate as expected for their designated life (or higher) with all risks kept as low as reasonably practicable, or as specified. Machine learning (ML) and artificial intelligence (AI) models are used intensively in oil and gas industry nowadays. ML concept is based on powerful algorithms and robust database. Developing an efficient classification model for well integrity (WI) anomalies is now feasible because of having enormous number of well failures and well barrier integrity tests, and analyses in the database. Circa 9000 dataset points were collected from WI tests performed for 800 wells in Gulf of Suez, Egypt for almost 10 years. Moreover, those data have been quality-controlled and quality-assured by experienced engineers. The data contain different forms of WI failures. The contributing parameter set includes a total of 23 barrier elements. Data were structured and fed into 11 different ML algorithms to build an automated systematic tool for calculating imposed risk category of any well. Comparison analysis for the deployed models was performed to infer the best predictive model that can be relied on. 11 models include both supervised and ensemble learning algorithms such as random forest, support vector machine (SVM), decision tree and scalable boosting techniques. Out of 11 models, the results showed that extreme gradient boosting (XGB), categorical boosting (CatBoost), and decision tree are the most reliable algorithms. Moreover, novel evaluation metrics for confusion matrix of each model have been introduced to overcome the problem of existing metrics which don't consider domain knowledge during model evaluation. The innovated model will help to utilize company resources efficiently and dedicate personnel efforts to wells with the high-risk. As a result, progressive improvements on business, safety, environment, and performance of the business. This paper would be a milestone in the design and creation of the Well Integrity Database Management Program through the combination of integrity and ML.


2020 ◽  
Author(s):  
Xueyan Li ◽  
Genshan Ma ◽  
Xiaobo Qian ◽  
Yamou Wu ◽  
Xiaochen Huang ◽  
...  

Abstract Background: We aimed to assess the performance of machine learning algorithms for the prediction of risk factors of postoperative ileus (POI) in patients underwent laparoscopic colorectal surgery for malignant lesions. Methods: We conducted analyses in a retrospective observational study with a total of 637 patients at Suzhou Hospital of Nanjing Medical University. Four machine learning algorithms (logistic regression, decision tree, random forest, gradient boosting decision tree) were considered to predict risk factors of POI. The total cases were randomly divided into training and testing data sets, with a ratio of 8:2. The performance of each model was evaluated by area under receiver operator characteristic curve (AUC), precision, recall and F1-score. Results: The morbidity of POI in this study was 19.15% (122/637). Gradient boosting decision tree reached the highest AUC (0.76) and was the best model for POI risk prediction. In addition, the results of the importance matrix of gradient boosting decision tree showed that the five most important variables were time to first passage of flatus, opioids during POD3, duration of surgery, height and weight. Conclusions: The gradient boosting decision tree was the optimal model to predict the risk of POI in patients underwent laparoscopic colorectal surgery for malignant lesions. And the results of our study could be useful for clinical guidelines in POI risk prediction.


Author(s):  
Hesham M. Al-Ammal

Detection of anomalies in a given data set is a vital step in several applications in cybersecurity; including intrusion detection, fraud, and social network analysis. Many of these techniques detect anomalies by examining graph-based data. Analyzing graphs makes it possible to capture relationships, communities, as well as anomalies. The advantage of using graphs is that many real-life situations can be easily modeled by a graph that captures their structure and inter-dependencies. Although anomaly detection in graphs dates back to the 1990s, recent advances in research utilized machine learning methods for anomaly detection over graphs. This chapter will concentrate on static graphs (both labeled and unlabeled), and the chapter summarizes some of these recent studies in machine learning for anomaly detection in graphs. This includes methods such as support vector machines, neural networks, generative neural networks, and deep learning methods. The chapter will reflect the success and challenges of using these methods in the context of graph-based anomaly detection.


Author(s):  
S. Prasanthi ◽  
S.Durga Bhavani ◽  
T. Sobha Rani ◽  
Raju S. Bapi

Vast majority of successful drugs or inhibitors achieve their activity by binding to, and modifying the activity of a protein leading to the concept of druggability. A target protein is druggable if it has the potential to bind the drug-like molecules. Hence kinase inhibitors need to be studied to understand the specificity of a kinase inhibitor in choosing a particular kinase target. In this paper we focus on human kinase drug target sequences since kinases are known to be potential drug targets. Also we do a preliminary analysis of kinase inhibitors in order to study the problem in the protein-ligand space in future. The identification of druggable kinases is treated as a classification problem in which druggable kinases are taken as positive data set and non-druggable kinases are chosen as negative data set. The classification problem is addressed using machine learning techniques like support vector machine (SVM) and decision tree (DT) and using sequence-specific features. One of the challenges of this classification problem is due to the unbalanced data with only 48 druggable kinases available against 509 non-drugggable kinases present at Uniprot. The accuracy of the decision tree classifier obtained is 57.65 which is not satisfactory. A two-tier architecture of decision trees is carefully designed such that recognition on the non-druggable dataset also gets improved. Thus the overall model is shown to achieve a final performance accuracy of 88.37. To the best of our knowledge, kinase druggability prediction using machine learning approaches has not been reported in literature.


Sign in / Sign up

Export Citation Format

Share Document