scholarly journals A Comparative Study of the Impact of the Stirrer Design in the Stir Casting Route to Produce Metal Matrix Composites

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Farooq Muhammad ◽  
Shawnam Jalal

Aluminum matrix composites are widely utilized in many sectors, and their popularity is rising due to their ability to combine high mechanical characteristics with their lightweight. Stir casting is typically achieved in a closed crucible with an invisible flow pattern to produce aluminum alloy matrix composites. Researchers employed a hybrid method to optimize the stir casting parameters. The vast number of parameters and their overlap affects the uniform distribution of reinforcement particles. Investigators on their way to the best technique have gotten promising outcomes in their specific situations, but they still need more work to be able to generalize their findings to optimize the stirrer design to get efficient mixing. Due to an experimental technique alone is insufficient for optimizing stir casting parameters, researchers combined theoretical, experimental, statistical, and numerical simulation approaches to get more precise and reliable findings. The design of the experiment (DOE), particularly Taguchi, and other standard statistics such as ANOVA and regression were discovered to be the most often utilized statistical contributions. Recent attempts to simulate stir casting have begun to match the experimental or analog model data by developed numerical software and analytical analysis. Finally, previous study results and suggestions were collected and compared, arranged, revised, and presented simply about the proper stirrer design, stages, and position in that to make the paper unique.

2013 ◽  
Vol 592-593 ◽  
pp. 614-617 ◽  
Author(s):  
Konstantinos Anthymidis ◽  
Kostas David ◽  
Pavlos Agrianidis ◽  
Afroditi Trakali

It is well known that the addition of ceramic phases in an alloy e.g. aluminum, in form of fibers or particles influences its mechanical properties. This leads to a new generation of materials, which are called metal matrix composites (MMCs). They have found a lot of application during the last twenty-five years due to their low density, high strength and toughness, good fatigue and wear resistance. Aluminum matrix composites reinforced by ceramic particles are well known for their good thermophysical and mechanical properties. As a result, during the last years, there has been a considerable interest in using aluminum metal matrix composites in the automobile industry. Automobile industry use aluminum alloy matrix composites reinforced with SiC or Al2O3 particles for the production of pistons, brake rotors, calipers and liners. However, no reference could be cited in the international literature concerning aluminum reinforced with TiB particles and Fe and Cr, although these composites are very promising for improving the mechanical properties of this metal without significantly alter its corrosion behavior. Several processing techniques have been developed for the production of reinforced aluminum alloys. This paper is concerned with the study of TiB, Fe and Cr reinforced aluminum produced by the stir-casting method.


2021 ◽  
Vol 53 (4) ◽  
pp. 210412
Author(s):  
Priyadarsini Morampudi ◽  
Venkata Ramana V.S.N. ◽  
Koona Bhavani ◽  
Amrita M ◽  
V Srinivas

Aluminum matrix composites (AMCs) are crucial to the progress of composite application areas due to their remarkable mechanical properties. Their usage has expanded into different fields such as the aerospace, automobile, and defense industries. The present study used wrought Al alloy AA6061 as the matrix, while ilmenite (FeTiO3) particles were used as reinforcement at different weight percentages to prepare metal matrix composites. One of the most economical and simple casting routes among the several available fabrication techniques for the preparation of composites is the stir casting method, which was applied in the present investigation to prepare the AMCs. The machinability of the fabricated composites and the surface roughness property after machining were studied to understand the effect of speed and feed during machining. The results showed that an increase in speed decreased the cutting forces and the surface roughness. Meanwhile, an increase in surface roughness was observed with an increase in feed.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Alicia E. Ares ◽  
Carlos E. Schvezov

The present work is focused on the study of the effect of directional heat extraction on the silicon-carbide (SiC) distribution in zinc-aluminum matrix composites (MMCs) and on the columnar-to-equiaxed (CET) position in directionally solidified samples. To this end, a ZA-27 alloy matrix was reinforced with ceramic particles of SiC and vertically directionally solidified. The cooling rates, temperature gradients, and interphase velocities were then measured, and their influence on the solidification microstructure of the MMCs was analyzed. The recalescence detected and measured during the equiaxed transition was of the order of 3.5°C to 1.1°C. The values of the temperature gradients reached a minimum during the CET and were even negative in most cases (between −3.89 K and 0.06 K). The interphase velocities varied between 0.07 mm/s and 0.44 mm/s at the transition. Also, the presence of ceramic particles in ZA-27 alloys affected the thermodynamic local conditions and the kinetics of nucleation, producing a finer microstructure.


2011 ◽  
Vol 686 ◽  
pp. 758-764 ◽  
Author(s):  
Xiao Ming Sui ◽  
Xi Liang Xu ◽  
Xiao Meng Zheng ◽  
Guang Zhi Xu ◽  
Qiang Wang

Driven by the increasing requirements from aircraft producers, aluminium alloy matrix composites with carbon fiber reinforcement have been largely used in the modern industry. The method of traditional preparation of carbon fiber reinforced aluminum matrix composites is not only high cost and complex to produce but also difficult to apply in the civilian. The present paper focuses on exploratory study on the preparation of carbon-fiber- reinforced aluminum composites, the intensifying material is continuous long carbon fiber. In order to avoid any interfacial reactions in the carbon fiber reinforced composites, the carbon fibers were coated with copper. We made The tensile samples were made by using the mould, the tensile properties determined, the strengthening mechanism studied, and the carbon fiber in the matrix observed with the microscope.


2013 ◽  
Vol 683 ◽  
pp. 333-338 ◽  
Author(s):  
Lin Li Wu ◽  
Wen Jing Yang ◽  
Jian Rong Xu ◽  
Guang Chun Yao

The graphite reinforced aluminum matrix composites were prepared by using stir-casting in this paper, with bulk alloy of ZL111, reinforcement of graphite particles coated with oxide, and the friction behavior was investigated perfectly. The results indicated that, the aluminum matrix composites reinforced with 6 wt.% graphite particles coated with oxide have a good property of self-lubrication under the condition of dry friction with a pressure of 40 N, a relative rate of 2.62 m/s of frictional backing gear, a wear time of 60 min, in addition, the friction factor and the wear capacity of the graphite / aluminum matrix composites were less than those of bulk alloy. Moreover, the friction factor and the wear capacity of the graphite / aluminum matrix composites decreased with an increase in mass fraction of the graphite coated with oxide, and the friction factor of composites became bigger while the fraction of the graphite particles was over 6wt.%.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540002 ◽  
Author(s):  
Dongfeng Cheng ◽  
Jitai Niu ◽  
Zeng Gao ◽  
Peng Wang

This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al – Si – Cu – Zn – Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.


2013 ◽  
Vol 577-578 ◽  
pp. 85-88
Author(s):  
K.G. Anthymidis ◽  
Kostas David ◽  
A. Trakali ◽  
P. Agrianidis

Composite materials which main constituent part is a metal are called Metal Matrix Composites (MMCs). The other compounds may be metals too, ceramics or even organics. They are well known for their excellent thermo-physical and mechanical properties. Reinforcement is used to improve different properties of the main material, such as wear resistance, hardness, fatigue resistance, friction coefficient, thermal conductivity and others. As a result, during the last years, MMCs have found a lot of application in automobile industry for the production of brakes and parts of engines and in aerospace industry for the production of structural components, as well as in electrical and electronic industry and in many other applications. MMCs can be produced by many ways, such as, powder blending and consolidation, foil diffusion bonding, electroplating, spray deposition, stir-casting and others. In this research stir-casting was used as processing technique for the production of Aluminum matrix composites reinforced by ceramic particles and iron. The morphologies of the produced composite materials were examined using optical and SEM microscopy. The compositions of their micro structural features were determined by EDX spectroscopy. The phases formed were determined by XRD techniques. In the tribological tests, under dry wear conditions, the as-produced composites materials showed significant increased resistance to wear compared to pure Al metal.


2017 ◽  
Vol 742 ◽  
pp. 173-180
Author(s):  
Steven Plötz ◽  
Andreas Lohmüller ◽  
Robert F. Singer

The outstanding performance of many aluminum matrix composites (AMCs) regarding specific stiffness makes AMCs attractive materials for lightweight construction. Low density boride compounds promise both an increase in stiffness and decrease in composite density. Therefore for this study AlB2, B and B4C were chosen for composite manufacturing. The composites were fabricated with the stir casting process. To avoid gas entrapment during mixing and ensure nonporous composites, partial vacuum was adapted during particle feeding and stirring. Poor wettability of used particle material in contact with liquid aluminum hindered particle incorporation, but alloying elements such as titanium were shown to affect wettability and particle incorporation for B4C. Zn had no influence on wettability or reactivity and did not improve particle incorporation. In contrast to Zn, Ti improved adhesion and wettability, but particle incorporation was improved exclusively for B4C. Besides alloying Ti, the use of high-shear force mixers improved particle incorporation enabling uniform particle distribution. AMCs with up to 12 vol.% of B4C particles were produced via stir casting without alloying Ti.


2018 ◽  
Vol 25 (4) ◽  
pp. 633-647 ◽  
Author(s):  
Jitendra M. Mistry ◽  
Piyush P. Gohil

AbstractThis paper presents a research review on fabrication processes and mechanical characterization of aluminum matrix composites (AMCs), which have found application in structural, electrical, thermal, tribological, and environmental fields. A comprehensive literature review is carried out on various types of fabrication processes, the effects of individual reinforcement and multiple reinforcements, its percentage, size, temperature, processing time, wettability, and heat treatment on the mechanical characterization of AMCs including different product applications. Various models and techniques proposed to express the mechanical characteristics of AMCs are stated here. The concluding remarks addresses the future work needed on AMCs.


Sign in / Sign up

Export Citation Format

Share Document