scholarly journals MiR-145-5p Inhibits the Invasion of Prostate Cancer and Induces Apoptosis by Inhibiting WIP1

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianming Sun ◽  
Linggang Deng ◽  
Ye Gong

Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.

2021 ◽  
Vol 49 (5) ◽  
pp. 030006052110143
Author(s):  
Mingcui Zang ◽  
Xun Guo ◽  
Manqiu Chen

Objective MicroRNAs (miRNAs) regulate prostate tumorigenesis and progression by involving different molecular pathways. In this study, we examined the role of miR-572 in prostate cancer (PCa). Methods The proliferation rates of LNCaP and PC-3 PCa cells were studied using MTT assays. Transwell migration and Matrigel invasion assays were performed to evaluate cell migration and invasion, respectively. Protein expression levels were examined using western blotting. Docetaxel-induced apoptosis was evaluated by Caspase-Glo3/7 assays. The putative miR-572 binding site in the phosphatase and tensin homolog (PTEN) 3ʹ untranslated region (3ʹ UTR) was assessed with dual-luciferase reporter assays. Additionally, miR-572 expression levels in human PCa tissues were examined by qRT-PCR assays. Results Upregulation of miR-572 promoted proliferation, migration, and invasion of PCa cells. Overexpression of miR-572 decreased sensitivity of PCa cells to docetaxel treatment by reducing docetaxel-induced apoptosis. MiR-572 can regulate migration and invasion in PCa cells. Furthermore, miR-572 could regulate expression of PTEN and p-AKT in PCa cells by directly binding to the PTEN 3ʹ UTR. MiR-572 expression levels were increased in human PCa tissues and associated with PCa stage. Conclusions miR-572 displayed essential roles in PCa tumor growth and its expression level may be used to predict docetaxel treatment in these tumors.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Li Fan ◽  
Hai Li ◽  
Yun Zhang

Abstract Background Accumulating evidence has associated aberrant long non-coding RNAs (lncRNAs) with various human cancers. This study aimed to explore the role of LINC00908 in prostate cancer (PCa) and its possible underlying mechanisms. Methods Microarray data associated with PCa were obtained from the Gene Expression Omnibus (GEO) to screen the differentially expressed genes or lncRNAs. Then, the expression of LINC00908 in PCa tissues and cell lines was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The localization of LINC00908 in PCa cells was examined by fluorescence in situ hybridization (FISH). The relationship among LINC00908, microRNA (miR)-483-5p, and TSPYL5 was detected by bioinformatics analysis, dual-luciferase reporter assay, RNA pull-down, RNA binding protein immunoprecipitation (RIP), and FISH assays. Cell biological behaviors were assessed after the expression of LINC00908, miR-483-5p, and TSPYL5 was altered in PCa cells. Lastly, tumor growth in nude mice was evaluated. Results Poorly expressed LINC00908 was witnessed in PCa tissues and cells. LINC00908 competitively bound to miR-483-5p to up-regulate the TSPYL5 expression. Overexpression of LINC00908 resulted in reduced PCa cell proliferation, migration and invasion, and promoted apoptosis. Additionally, the suppression on PCa cell proliferation, migration and invasion was induced by up-regulation of TSPYL5 or inhibition of miR-483-5p. In addition, in vivo experiments showed that overexpression of LINC00908 inhibited tumor growth of PCa. Conclusion Overall, LINC00908 could competitively bind to miR-483-5p to increase the expression of TSPYL5, thereby inhibiting the progression of PCa. Therefore, LINC00908 may serve as a novel target for the treatment of PCa.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Enhui Ma ◽  
Qianqian Wang ◽  
Jinhua Li ◽  
Xinqi Zhang ◽  
Zhenjia Guo ◽  
...  

Abstract Background Prostate cancer (PCa) is a kind of malignancy occurring in the prostate gland. Substantial researches have proved the major role of long noncoding RNAs (lncRNAs) in PCa. However, the role of long intergenic non-protein coding RNA 1006 (LINC01006) in PCa has not been investigated yet. Methods RT-qPCR was used to examine the expression levels of LINC01006 and its downstream targets. The function of LINC01006 in PCa was tested by in vitro and in vivo assays. With application of RNA pull down, RNA immunoprecipitation (RIP) and luciferase reporter assays, the interaction among LINC01006, miR-34a-5p and disheveled associated activator of morphogenesis 1 (DAAM1) were verified. Results LINC01006 expression presented high in PCa cell lines. LINC01006 silencing suppressed cell proliferative, migratory, invasive capacities while accelerated apoptotic rate. Besides, LINC01006 knockdown also suppressed tumor growth and metastasis in vivo. Furthermore, miR-34a-5p, a tumor suppressor in PCa, was sponged by LINC01006. Moreover, DAAM1 was targeted by miR-34a-5p and promoted PCa progression. More intriguingly, rescue assays suggested that the inhibitory effect of LINC01006 knockdown on PCa development was offset by DAAM1 overexpression. Conclusions LINC01006 promoted PCa progression by sponging miR-34a-5p to up-regulate DAAM1, providing a novel target for PCa therapy.


2020 ◽  
Author(s):  
Wu Zhiyong ◽  
Luo Jie ◽  
Huang Tengyue ◽  
Yi Renhui ◽  
Ding Shengfeng ◽  
...  

Abstract Background: miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the tumor progression of human glioma.Methods: miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) , Transwell chamber, Boyden chamber, and western blot analyses, as well as in vivo tumorigenesis in nude mice. The relationships among miR-4310, SP1, and phosphatase and tensin homolog (PTEN) were explored by chromatin immunoprecipitation (ChIP), agarose gel electrophoresis, electrophoresis mobility shift (EMSA), and dual luciferase reporter gene assays. Results: miR-4310 expression was upregulated in glioma tissues compared to NB. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo . Inhibition of miR-4310 was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion: miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway meanwhile the expression of miR-4310 is induced by SP1.


2020 ◽  
Author(s):  
Liangjun Tao ◽  
Xinyuan Pan ◽  
Jiawei Wang ◽  
Li Zhang ◽  
Lingsong Tao ◽  
...  

Abstract Background: Growing studies indicate that circRNAs play critical roles in human diseases, and show great potential as biomarkers and therapeutic targets. This study aims to investigate the expression and function of circANKS1B in prostate cancer (PC).Methods: The expression of circANKS1B and miRNA-152-3p were determined by real-time qRT-PCR. The cell migration and invasion were measured by transwell assay. The interaction between circANKS1B and miR-152-3p was confirmed by dual-luciferase reporter gene assay. Rescue experiments were conducted to demonstrate whether circANKS1B regulated the migration and invasion of PC cells by the circANKS1B-miR-152-3p-TGF-α pathway.Results: The expression of circANKS1B was dramatically up-regulated both in PC cells and tissues. Moreover, high circANKS1B expression was associated with a poor prognosis of PC patients. Dual-luciferase reporter assay indicated that circABKS1B directly bound to miRNA-152-3p. Furthermore, circANKS1B negatively regulated miR-152-3p expression. Knockdown of circANKS1B remarkably suppressed PC cells invasion and TGF-α expression, while the effects of circANKS1B silencing were reversed by miR-152-3p deficiency. In addition, the impact of miR-152-3p silencing on PC cell invasion was also abrogated by TGF-α deficiency. In all, circANKS1B as the sponge of miR-152-3p promotes prostate cancer progression by up-regulating TGF-α expression.Conclusion: Our findings reveal that circANKS1B could be a potential prognostic biomarker and therapeutic target of PC.


2019 ◽  
Vol 167 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Fu-Lai Pei ◽  
Ming-Zheng Cao ◽  
Yue-Feng Li

Abstract Accumulating researches have confirmed that circRNA abnormal expression plays a prominent role in the progression of colorectal cancer (CRC). The role of circ_0000218 in CRC and its potential mechanism are not clear. In this study, real-time polymerase chain reaction (RT-PCR) was employed to measure the circ_0000218, miR-139-3p and RAB1A mRNA expression in CRC tissues and cells. Immunohistochemistry and western blot were conducted to determine the RAB1A expression in CRC tissues and cells, respectively. Colony formation assay and BrdU method were employed to monitor the effect of circ_0000218 on cell proliferation. Transwell assay was adopted to detect cell migration and invasion. Dual luciferase reporter assay and RNA immunoprecipitation assay were adopted to confirm the targeting relationship between circ_0000218 and miR-139-3p, miR-139-3p and RAB1A. We demonstrated that circ_0000218 was notably upregulated in CRC tissues and cell lines, and its high expression level was markedly linked to the increase of T staging and local lymph node metastasis. Circ_0000218 overexpression enhanced the proliferation and metastasis of CRC cells while knocking down circ_0000218 caused the opposite effects. We also observed that miR-139-3p was negatively regulated by circ_0000218, while RAB1A was positively regulated by it. Collectively, this study suggested that circ_0000218 upregulated RAB1A and promoted CRC proliferation and metastasis via sponging miR-139-3p.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
LiPan Peng ◽  
ZeZhong Chen ◽  
GuangChuan Wang ◽  
ShuBo Tian ◽  
Shuai Kong ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. Results LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. Conclusions In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanping Dai ◽  
Xiaoqin Gao

Abstract Background Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. Methods Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. Results High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. Conclusions Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.


2020 ◽  
Author(s):  
Wu Zhiyong ◽  
Luo Jie ◽  
Huang Tengyue ◽  
Yi Renhui ◽  
Ding Shengfeng ◽  
...  

Abstract Background: miRNAs have been reported to be involved in multiple biological processes of gliomas. Here, we aimed to analyze miR-4310 and its correlation genes involved in the tumor progression of human glioma. Methods: miR-4310 expression levels were examined in glioma and non-tumor brain (NB) tissues. The molecular mechanisms of miR-4310 expression and its effects on cell proliferation, migration, and invasion were explored by 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) , Transwell chamber, Boyden chamber, and western blot analyses, as well as in vivo tumorigenesis in nude mice. The relationships among miR-4310, SP1, and phosphatase and tensin homolog (PTEN) were explored by chromatin immunoprecipitation (ChIP), agarose gel electrophoresis, electrophoresis mobility shift (EMSA), and dual luciferase reporter gene assays. Results: miR-4310 expression was upregulated in glioma tissues compared to NB. Overexpressed miR-4310 promoted glioma cell proliferation, migration, and invasion in vitro and tumorigenesis in vivo . Inhibition of miR-4310 was sufficient to reverse these results. Mechanistic analyses revealed that miR-4310 promoted glioma progression through the PI3K/AKT pathway by targeting PTEN. Additionally, SP1 induced the expression of miR-4310 by binding to its promoter region. Conclusion: miR-4310 promotes the progression of glioma by targeting PTEN and activating the PI3K/AKT pathway meanwhile the expression of miR-4310 is induced by SP1.


2020 ◽  
Vol 19 ◽  
pp. 153303382096747
Author(s):  
Ming-Zhi Cai ◽  
Shao-Yan Wen ◽  
Xue-Jun Wang ◽  
Yong Liu ◽  
Han Liang

Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.


Sign in / Sign up

Export Citation Format

Share Document