scholarly journals MYC Regulates PHF8, Which Promotes the Progression of Gastric Cancer by Suppressing miR-22-3p

2020 ◽  
Vol 19 ◽  
pp. 153303382096747
Author(s):  
Ming-Zhi Cai ◽  
Shao-Yan Wen ◽  
Xue-Jun Wang ◽  
Yong Liu ◽  
Han Liang

Plant homeodomain finger protein 8 (PHF8) has been reported to participate in cancer development and metastasis of various types of tumors. However, little is known about the functional mechanism of PHF8 in gastric cancer (GC). This study aimed to explore the PHF8 expression pattern and function, and the role of the MYC/miRNA/PHF8 axis in GC. PHF8 expression was upregulated in GC tissues and cells as measured using quantitative reverse transcription polymerase chain reaction and western blotting. PHF8 knockdown suppressed the proliferation, migration, and invasion of GC cells, as determined using the CCK-8 assay and Transwell assay. MicroRNA-22-3p targeted PHF8, as verified by a dual-luciferase reporter assay. MYC upregulated the protein expression of PHF8 but had no effect on PHF8 mRNA expression. MYC regulates PHF8 by affecting the stability of miR-22-3p. We identified a novel MYC/miR-22-3p/PHF8 regulatory axis in GC. Therefore, PHF8 may provide a new therapeutic target for patients with GC.

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
LiPan Peng ◽  
ZeZhong Chen ◽  
GuangChuan Wang ◽  
ShuBo Tian ◽  
Shuai Kong ◽  
...  

Abstract Background Long noncoding RNAs (LncRNAs) have been reported to critically regulate gastric cancer (GC). Recently, it was reported that LBX2 antisense RNA 1 (LBX2-AS1) is abnormally expressed in GC. However, the role of LBX2-AS1 in the malignancy of GC is worth further discussion. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the LBX2-AS1, miR-4766-5p and C-X-C motif chemokine (CXCL5) expression in GC tissues and cells. Dual-luciferase reporter assay was applied to examine the target relationship between LBX2-AS1 and miR-4766-5p or miR-4766-5p and CXCL5. Cell counting kit-8 (CCK-8) and Transwell assays were used to detect cell proliferation, migration and invasion rates. The protein expression of CXCL5 was confirmed using western blot. The RNA pull down experiment was used to verify the specificity of LBX2-AS1 and miR-4766-5p on BGC-823 and SGC-7901 cells. Results LBX2-AS1 was up-regulated in GC tissues and cells, and its knockdown suppressed proliferation, migration and invasion of GC cells. While, overexpression of LBX2-AS1 increased proliferation and increased CXCL5 mRNA level. CXCL5 improved cell proliferation, migration and invasion of GC cells. LBX2-AS1 could bind to miR-4766-5p to regulate CXCL5 expression. Overexpression of CXCL5 overturned those effects of miR-4766-5p in GC cells. RNA Pull down shown that BGC-823 and SGC-7901 cells, miR-4766-5p specifically binds to LBX2-AS1. Conclusions In short, this study demonstrated that LBX2-AS1 promoted proliferation, migration and invasion through up-regulation CXCL5 mediated by miR-4766-5p in GC. The LBX2-AS1/miR-4766-5p/CXCL5 regulatory axis provides a theoretical basis for the research on lncRNA-directed therapeutics in GC.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Liting You ◽  
Qian Wu ◽  
Zhaodan Xin ◽  
Huiyu Zhong ◽  
Juan Zhou ◽  
...  

Abstract Background miR-124-3p can inhibit integrin β3 (ITGB3) expression to suppress the migration and invasion of gastric cancer (GC), and in the process lncRNA HOXA11-AS may act as a molecular sponge. Methods Luciferase reporter assay was conducted to verify the binding of miR-124-3p and HOXA11-AS. RT-PCR and western blot were performed to detect the expression of HOXA11-AS, miR-124-3p and ITGB3 in GC tissues and cells. Gene silence and overexpression experiments as well as cell migration and invasion assays on GC cell lines were performed to determine the regulation of molecular pathways, HOXA11-AS/miR-124-3p/ITGB3. Furthermore, the role of HOXA11-AS in GC was confirmed in mice models. Results We found HOXA11-AS is up-regulated in GC tissues and can bind with miR-124-3p. Through overexpression/knockdown experiments and function tests in vitro, we demonstrated HOXA11-AS can promote ITGB3 expression by sponging miR-124-3p, consequently enhance the proliferation, migration, and invasion of GC cells. Meanwhile, we validated that HOXA11-AS promotes migration and invasion of GC cells via down-regulating miR-124-3p and up-regulating ITGB3 in vivo. Conclusions We demonstrated that lncRNA HOXA11-AS can increase ITGB3 expression to promote the migration and invasion of gastric cancer by sponging miR-124-3p. Our results suggested that HOXA11-AS may reasonably serve as a promising diagnostic biomarker and a potential therapeutic target of GC.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jishui Zhang ◽  
Wenhao Lv ◽  
Yagang Liu ◽  
Weihua Fu ◽  
Baosheng Chen ◽  
...  

Abstract Background Long non-coding RNAs exert vital roles in several types of cancer. The objective of this study was to explore the role of LINC_00355 in gastric cancer (GC) progression and its potential mechanism. Methods The expression levels of LINC_00355 in GC tissues and cells were detected by quantitative real-time PCR, followed by assessing the effects of LINC_00355 knockdown or overexpression on cell properties. Dual-luciferase reporter assay was utilized to identify the relationship between LINC_00355 and microRNA (miR)-15a-5p and miR-15a-5p and PHD finger protein 19 (PHF19), followed by the rescue experiments. Results The results showed that LINC_00355 was highly expressed in GC tissues and cells compared with the corresponding control. LINC_00355 knockdown decreased the viability, migration, and invasion and increased the accumulation of GC cells in G1 phase and apoptosis. Meanwhile, LINC_00355 downregulation markedly increased cleaved caspase 3 and cleaved poly (ADP-ribose) polymerase protein levels, whereas decreased cyclin D1, cyclin E, matrix metalloproteinase (MMP) 9, MMP2, and N-cadherin protein levels in GC cells. However, LINC_00355 overexpression had the opposite effects. It was verified that LINC_00355 upregulated the expression of PHF19 through sponging miR-15a-5p. Furthermore, PHF19 overexpression reversed the effect of LINC_00355 knockdown on GC cell properties, including cell viability, migration, invasion, and apoptosis. Conclusions Collectively, these results suggest that LINC_00355 promotes GC progression by up-regulating PHF19 through sponging miR-15a-5p. Our findings may provide an important clinical basis for reversing the malignant phenotype of GC.


2021 ◽  
pp. 1-13
Author(s):  
Jing Shen ◽  
Qiang Shu

<b><i>Purpose:</i></b> Compelling evidence has unveiled the importance of long noncoding RNAs (lncRNAs) in malignant behavior of Wilms’ tumor (WT). Hereon, we intend to assess the function and associated molecular mechanism of lncRNA maternally expressed gene 8 (MEG8) in WT cells. <b><i>Methods:</i></b> Expression levels of MEG8, miR-23a-3p, and CT10 regulator of kinase (CRK) were determined by quantitative real-time polymerase chain reaction. Cell viability was assessed by MTT assay. Besides, wound healing assay and transwell assay were applied to examine abilities of cell migration and invasion, respectively. Dual-luciferase reporter assay was employed to test the interplay among MEG8, miR-23a-3p, and CRK. Western blot was used to detect relative protein expression of CRK. <b><i>Results:</i></b> MEG8 and CRK expression was elevated, while miR-23a-3p expression was decreased in WT tissues and cells. The histologic type, lymphatic metastasis, and National Wilms Tumor Study (NWTS) stage were associated with the expression of MEG8, miR-23a-3p, and CRK in WT patients. MEG8 knockdown or miR-23a-3p overexpression restrained WT cells in cell viability, migration, and invasiveness in vitro. As to mechanism exploration, MEG8 could directly bind to miR-23a-3p and then miR-23a-3p targeted CRK. MEG8 was inversely correlated with miR-23a-3p and positively correlated with CRK in WT tissues. Meantime, miR-23a-3p was inversely correlated with CRK in WT tissues. Additionally, MEG8 knockdown-mediated suppressive impacts on cell viability, migration, and invasiveness were reversed by overexpression of CRK or repression of miR-23a-3p in WT cells. <b><i>Conclusions:</i></b> The cell viability, migration, and invasiveness of WT cells were repressed by MEG8 knockdown via targeting the miR-23a-3p/CRK axis.


2021 ◽  
Author(s):  
Shenshuo Gao ◽  
Zhikai Zhang ◽  
Xubin Wang ◽  
Yan Ma ◽  
Chensheng Li ◽  
...  

Abstract Background: Gastric cancer (GC) is one of the most common malignancies, and more and more evdiences show that the pathogenesis is regulated by various miRNAs.In this study, we investigated the role of miR-875 in GC. Methods:The expression of miR-875-5p was detected in human GC specimens and cell lines by miRNA RT-PCR. The effect of miR-875-5p on GC proliferation was determined by CCK-8 proliferation assay and EDU assay. Migration and invasion were examined by transwell migration and invasion assay and wound healing assay. The interaction between miR-875-5p and its target gene USF2 was verified by a dual luciferase reporter assay. The effects of miR-875-5p in vivo were studied in xenograft nude mice models.Related proteins were detected by Western blot.Results:The results showed that miR-875-5p inhibited the proliferation, migration and invasion of gastric cancer cells in vitro, and inhibited tumorigenesis in vivo. USF2 proved to be a direct target of miR-875-5p. Knockdown of USF2 partially counteracts the effects of miR-875-5p inhibitors.Overexpression of miR-875-5p can inhibit proliferation, migration, and invasion through the TGF-β signaling pathway by down-regulation of USF2 in GC, providing a new research direction for the diagnosis and targeted therapy of GC.Conclusions: MiR-875-5pcan inhibited the progression of GC by directly targeting USF2 and negatively regulating TGF-β signaling pathway.In the future, miR-875-5p is expected to be used as a potential therapeutic target for GC therapy.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jianming Sun ◽  
Linggang Deng ◽  
Ye Gong

Prostate cancer (PCa) is a common malignant tumor of the male genitourinary system that seriously affects the quality of life of patients. Studying the pathogenesis and therapeutic targets of PCa is important. In this study, we investigated the role of miR-145-5p in PCa and its potential molecular mechanisms. The expression levels of miR-145-5p in PCa tissues and adjacent control tissues were detected by real-time quantitative polymerase chain reaction. The effects of miR-145-5p overexpression on PCa were studied using cell proliferation, migration, and invasion experiments. Furthermore, WIP1 was the target gene of miR-145-5p through the bioinformatics website and dual-luciferase reporter gene experiment. Further studies found that WIP1 downregulation could inhibit the proliferation, invasion, and cloning of PCa cells. Overexpression of WIP1 reversed the anticancer effects of miR-145. The anticancer effect of miR-145 was achieved by inhibiting the PI3K/AKT signaling pathway and upregulating ChK2 and p-p38MAPK. Taken together, these results confirmed that miR-145-5p inhibited the growth and metastasis of PCa cells by inhibiting the expression of proto-oncogene WIP1, thereby playing a role in tumor suppression in PCa and may become a potential therapeutic target for the treatment of PCa.


2021 ◽  
Author(s):  
Jinxi Huang ◽  
Weiwei Yuan ◽  
Beibei Chen ◽  
Gaofeng Li ◽  
Xiaobing Chen

Abstract BackgroundExtracellular leucine rich repeat and fibronectin type III domain containing 1-antisense RNA 1 (ELFN1-AS1) was upregulated in tumors. Nevertheless, the biological functions of ELFN1-AS1 in gastric cancer are not fully understood.MethodsThe ELFN1-AS1, miR-211-3p and TRIM29 expression levels were determined by reverse transcription-quantitative PCR. CCK8, EDU and colony formation assays were done to test the GC cell vitality. The migratory and invasive capabilities of GC cells were further measured by transwell invasion and cell scratch assays. The ceRNA activity of ELFN1-AS1 for TRIM29 via miR-211-3pp was ascertained through pull down, RIP and luciferase reporter assays.ResultsELFN1-AS1 and TRIM29 were robustly expressed in gastric cancer tissues and negatively associated overall survival time of patients. The ELFN1-AS1 silence blocked the proliferation, migration and invasion of GC cells. The oncogenic role of ELFN1-AS1 was recognized to be modulated by miR-211-3pp, which competitively bind to 3'UTR TRIM29 and resulted in the reduced expression of TRIM29.ConclusionELFN1-AS1 maintained the tumorigensis of GC cells by ELFN1-AS1/miR-211-3pp/TRIM29 axis, suggesting that intervention targeting this axis may be warranted for GC treatment.


2019 ◽  
Vol 167 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Fu-Lai Pei ◽  
Ming-Zheng Cao ◽  
Yue-Feng Li

Abstract Accumulating researches have confirmed that circRNA abnormal expression plays a prominent role in the progression of colorectal cancer (CRC). The role of circ_0000218 in CRC and its potential mechanism are not clear. In this study, real-time polymerase chain reaction (RT-PCR) was employed to measure the circ_0000218, miR-139-3p and RAB1A mRNA expression in CRC tissues and cells. Immunohistochemistry and western blot were conducted to determine the RAB1A expression in CRC tissues and cells, respectively. Colony formation assay and BrdU method were employed to monitor the effect of circ_0000218 on cell proliferation. Transwell assay was adopted to detect cell migration and invasion. Dual luciferase reporter assay and RNA immunoprecipitation assay were adopted to confirm the targeting relationship between circ_0000218 and miR-139-3p, miR-139-3p and RAB1A. We demonstrated that circ_0000218 was notably upregulated in CRC tissues and cell lines, and its high expression level was markedly linked to the increase of T staging and local lymph node metastasis. Circ_0000218 overexpression enhanced the proliferation and metastasis of CRC cells while knocking down circ_0000218 caused the opposite effects. We also observed that miR-139-3p was negatively regulated by circ_0000218, while RAB1A was positively regulated by it. Collectively, this study suggested that circ_0000218 upregulated RAB1A and promoted CRC proliferation and metastasis via sponging miR-139-3p.


Author(s):  
Chenlong Song ◽  
Chongzhi Zhou

Abstract Background Homeobox A10 (HOXA10) belongs to the HOX gene family, which plays an essential role in embryonic development and tumor progression. We previously demonstrated that HOXA10 was significantly upregulated in gastric cancer (GC) and promoted GC cell proliferation. This study was designed to investigate the role of HOXA10 in GC metastasis and explore the underlying mechanism. Methods Immunohistochemistry (IHC) was used to evaluate the expression of HOXA10 in GC. In vitro cell migration and invasion assays as well as in vivo mice metastatic models were utilized to investigate the effects of HOXA10 on GC metastasis. GSEA, western blot, qRT-PCR and confocal immunofluorescence experiments preliminarily analyzed the relationship between HOXA10 and EMT. ChIP-qPCR, dual-luciferase reporter (DLR), co-immunoprecipitation (CoIP), colorimetric m6A assay and mice lung metastasis rescue models were performed to explore the mechanism by which HOXA10 accelerated the EMT process in GC. Results In this study, we demonstrated HOXA10 was upregulated in GC patients and the difference was even more pronounced in patients with lymph node metastasis (LNM) than without. Functionally, HOXA10 promoted migration and invasion of GC cells in vitro and accelerated lung metastasis in vivo. EMT was an important mechanism responsible for HOXA10-involved metastasis. Mechanistically, we revealed HOXA10 enriched in the TGFB2 promoter region, promoted transcription, increased secretion, thus triggered the activation of TGFβ/Smad signaling with subsequent enhancement of Smad2/3 nuclear expression. Moreover, HOXA10 upregulation elevated m6A level and METTL3 expression in GC cells possible by regulating the TGFB2/Smad pathway. CoIP and ChIP-qPCR experiments demonstrated that Smad proteins played an important role in mediating METTL3 expression. Furthermore, we found HOXA10 and METTL3 were clinically relevant, and METTL3 was responsible for the HOXA10-mediated EMT process by performing rescue experiments with western blot and in vivo mice lung metastatic models. Conclusions Our findings indicated the essential role of the HOXA10/TGFB2/Smad/METTL3 signaling axis in GC progression and metastasis.


2019 ◽  
Vol 51 (9) ◽  
pp. 900-907 ◽  
Author(s):  
Jiying Huang ◽  
Manru Shen ◽  
Meizhu Yan ◽  
Ying Cui ◽  
Zhenjun Gao ◽  
...  

Abstract Currently, exosomes rich in RNAs and proteins are regarded as vital mediators of intercellular communication. Here, we aimed to explore the effects of exosomal miR-1290 in gastric cancer (GC) and understand its mechanism of action on GC progression. We first isolated exosomes from serum samples of GC patients and healthy people and characterized them by transmission electron microscopy. Then, we examined the expression level of miR-1290 contained in the exosomes by quantitative reverse-transcription polymerase chain reaction and found that exosomal miR-1290 was overexpressed in GC patients and cell lines. Promotion of proliferation, migration, and invasiveness of GC cells was noted after they were incubated with the isolated miR-1290-rich exosomes compared with incubation with a negative control. Furthermore, we predicted that naked cuticle homolog 1 (NKD1) mRNA is a direct target of miR-1290 and confirmed their interaction by a dual luciferase reporter assay. NKD1 overexpression attenuated the stimulatory effects of miR-1290 on GC cells. Collectively, our results suggest that exosomal miR-1290 enhances GC cell proliferation and invasion by targeting NKD1 mRNA and downregulating NKD1 expression. A better understanding of this process may facilitate the development of novel therapeutic agents for GC.


Sign in / Sign up

Export Citation Format

Share Document