scholarly journals Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanping Dai ◽  
Xiaoqin Gao

Abstract Background Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. Methods Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. Results High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. Conclusions Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.

Author(s):  
Shuangjian Jiang ◽  
Chengqiang Mo ◽  
Shengjie Guo ◽  
Jintao Zhuang ◽  
Bin Huang ◽  
...  

Abstract Background Human bone marrow mesenchymal stem cells (hBMSCs) are implicated in cancer initiation and metastasis, sometimes by releasing exosomes that mediate cell communication by delivering microRNAs (miRNAs). This study aimed to investigate the physiological mechanisms by which exosomal miR-205 derived from hBMSCs may modulate the growth of prostate cancer cells. Methods Microarray-based gene expression profiling of prostate cancer was adopted to identify differentially expressed genes and regulatory miRNAs, which identified the candidates RHPN2 and miR-205 as the study focus. Then the binding affinity between miR-205 and RHPN2 was identified using in silico analysis and luciferase activity detection. Prostate cancer cells were co-cultured with exosomes derived from hBMSCs treated with either miR-205 mimic or miR-205 inhibitor. Subsequently, prostate cancer cell proliferation, invasion, migration, and apoptosis were detected in vitro. The effects of hBMSCs-miR-205 on tumor growth were investigated in vivo. Results miR-205 was downregulated, while RHPN2 was upregulated in prostate cancer cells. RHPN2 was a target of miR-205, and upregulated miR-205 inhibited prostate cancer cell proliferation, invasion, and migration and promoted apoptosis by targeting RHPN2. Next, experiments demonstrated that hBMSCs-derived exosomes carrying miR-205 contributed to repressed prostate cancer cell proliferation, invasion, and migration and enhanced apoptosis. Furthermore, in vivo assays confirmed the inhibitory effects of hBMSCs-derived exosomal miR-205 on prostate cancer. Conclusion The hBMSCs-derived exosomal miR-205 retards prostate cancer progression by inhibiting RHPN2, suggesting that miR-205 may present a predictor and potential therapeutic target for prostate cancer.


2020 ◽  
Vol 20 (10) ◽  
pp. 1197-1208
Author(s):  
Zhuo Ma ◽  
Kai Li ◽  
Peng Chen ◽  
Qizheng Pan ◽  
Xuyang Li ◽  
...  

Background: Osteosarcoma (OS) is a prevalent primary bone malignancy and its distal metastasis remains the main cause of mortality in OS patients. MicroRNAs (miRNAs) play critical roles during cancer metastasis. Objective: Thus, elucidating the role of miRNA dysregulation in OS metastasis may provide novel therapeutic targets. Methods: The previous study found a low miR-134 expression level in the OS specimens compared with paracancer tissues. Overexpression of miR-134 stable cell lines was established. Cell viability assay, cell invasion and migration assay and apoptosis assay were performed to evaluate the role of miR-134 in OS in vitro. Results: We found that miR-134 overexpression inhibits cell proliferation, migration and invasion, and induces cell apoptosis in both MG63 and Saos-2 cell lines. Mechanistically, miR-134 targets the 3'-UTR of VEGFA and MYCN mRNA to silence its translation, which was confirmed by luciferase-reporter assay. The real-time PCR analysis illustrated that miR-134 overexpression decreases VEGFA and MYCN mRNA levels. Additionally, the overexpression of VEGFA or MYCN can partly attenuate the effects of miR-134 on OS cell migration and viability. Furthermore, the overexpression of miR-134 dramatically inhibits tumor growth in the human OS cell line xenograft mouse model in vivo. Moreover, bioinformatic and luciferase assays indicate that the expression of miR-134 is regulated by Interferon Regulatory Factor (IRF1), which binds to its promoter and activates miR-134 expression. Conclusion: Our study demonstrates that IRF1 is a key player in the transcriptional control of miR-134, and it inhibits cell proliferation, invasion and migration in vitro and in vivo via targeting VEGFA and MYCN.


2021 ◽  
Author(s):  
He Liu ◽  
Xin He ◽  
Tianjiao Li ◽  
Yi Qu ◽  
Lina Xu ◽  
...  

Abstract Background: The important role of long noncoding RNAs (lncRNAs) in cancer has been demonstrated in many studies. Prostate cancer gene expression marker 1 (PCGEM1) is a lncRNA specifically expressed within the prostate and overexpressed in many cancer cells. Numerous studies have shown that PCGEM1 promotes cell proliferation, invasion and migration. However, the specific mechanism of PCGEM1 within prostate cancer (PCa) has not been elucidated. MicroRNA-506-3p (miR-506-3p) is a noncoding RNA, and studies have indicated that miR-506-3p is downregulated in prostate cancer cell lines and functions as a tumor suppressor.Methods: The TCGA (GEPIA) database (http://gepia.cancer-pku.cn/) was employed to measure PCGEM1 levels in PCa. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to determine the PCGEM1 gene level. CCK-8 (Cell Counting Kit-8) and colony formation assays were used to detect cell proliferation, and Transwell assays were applied to assess cell invasion and migration. The interacting ability of miR-506-3p with PCGEM1 or TRIAP1 was validated through a dual-luciferase reporter assay. TRIAP1 protein expression was detected by Western blotting.Results: PCGEM1 expression was increased in PCa tissues and cells. In PCa tissues, High PCGEM1 expression was associated with high Gleason score, distant metastasis and extracapsular extension. In addition, PCGEM1 knockdown inhibited PCa cell (C4-2B and PC-3) proliferation, invasion and migration. miR-506-3p may interact with PCGEM1 or TRIAP1, and the suppressive effect of PCGEM1 knockdown was reversed when TRIAP1 or a miR-506-3p inhibitor was cotransfected.Conclusion: PCGEM1 expression increased in PCa cells and tissues, enhancing PCa cell proliferation, migration and invasion by sponging miR-506 to upregulate TRIAP1.


2021 ◽  
Vol 11 (5) ◽  
pp. 896-902
Author(s):  
Jinwei Zhao ◽  
Ling Li

MicroRNAs have been reported to be associated with the initiation and progression of rheumatoid arthritis (RA). miR-216a-5p, one of the miRNAs, is involved in cancer cell proliferation, invasion and migration. However, the role of miR-216a-5p in RA remains to be explored. The expressions of miR-216a-5p and zinc finger and BTB domain-containing protein 2 (ZBTB2) in fibroblast-like synoviocytes (FLS) of RA or healthy controls were detected by qRT-PCR and western blot analysis. Transfection of overexpressed and silenced miR-216a-5p were performed to explore the functional role of miR-216a-5p in RA-FLS. Cell Counting Kit-8 (CCK-8) assay and transwell assay were employed to assess cell proliferation and cell invasion, respectively. Moreover, luciferase reporter assay was executed to verify the combination of miR-216a-5p and ZBTB2. The results showed that miR-216a-5p expression in RA-FLS was downregulated than healthy controls. Overexpres-sion of miR-216a-5p inhibited RA-FLS cell proliferation, invasion and migration, while miR-216a-5p silencing revealed the opposite results. In addition, ZBTB2 was identified to be a direct target of miR-216a-5p in RA-FLS and its expression was higher than that in healthy controls. Rescue experiments revealed that ZBTB2 overexpression reversed the effects of miR-216a-5p on the proliferation, invasion and migration of RA-FLS. These data indicated the suppressive role of miR-216a-5p in RA-FLS via the regulation of ZBTB2, suggesting that miR-216a-5p and ZBTB2 may be the new targets for the treatment of RA.


2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Ying Zhang ◽  
Bingmei Sun ◽  
Lianbin Zhao ◽  
Zhengling Liu ◽  
Zonglan Xu ◽  
...  

Abstract The purpose of the present study is to figure out the role of miRNA-148a (miR-148a) in growth, apoptosis, invasion, and migration of cervical cancer cells by binding to regulator of ribosome synthesis 1 (RRS1). Cervical cancer and adjacent normal tissues, as well as cervical cancer cell line Caski, HeLa, C-33A, and normal cervical epithelial cell line H8 were obtained to detect the expression of miR-148a and RRS1. Relationship between miR-148a and RRS1 expression with clinicopathological characteristics was assessed. The selected Caski and HeLa cells were then transfected with miR-148a mimics, miR-148a inhibitors or RRS1 siRNA to investigate the role of miR-148a and RRS1 on proliferation, apoptosis, colony formation, invasion, and migration abilities of cervical cancer cells. Bioinformatics information and dual luciferase reporter gene assay was for used to detect the targetting relationship between miR-148a and RRS1. Down-regulated miR-148a and up-regulated RRS1 were found in cervical cancer tissues and cells. Down-regulated miR-148a and up-regulated RRS1 are closely related with prognostic factors of cervical cancer. RRS1 was determined as a target gene of miR-148a and miR-148a inhibited RRS1 expression in cervical cancer cells. Up-regulation of miR-148a inhibited cell proliferation, migration, and invasion while promoting apoptosis in Caski and HeLa cells. Our study suggests that miR-148a down-regulates RRS1 expression, thereby inhibiting the proliferation, migration, and invasion while promoting cell apoptosis of cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document