scholarly journals Study on Autogenous Heat Technology of Offshore Oilfield: Experiment Research, Process Design, and Application

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanping Sun ◽  
Chengsheng Wang ◽  
Jun Sun ◽  
Shuliang Ren ◽  
Hua Peng ◽  
...  

Conventional heavy oil has abundant reserves and low recovery efficiency in offshore oilfields. Autogenous heat technology uses 2-3 kinds of inorganic salt solution to produce inert gas and release a lot of heat under the action of a catalyst. It is applied to improve heavy oil recovery of the offshore oilfield. This paper applies experimental schemes such as viscosity reduction rate evaluation, heat conditions, gas production conditions, reaction rate control, and effect of environmental factors. This paper evaluates the performance of the autogenous heat system, optimizes the process parameters, and designs the process scheme and construction scheme according to the oil well production. This paper researches an autogenous heat system with nontoxic and high heat production and optimizes the catalyst type, concentration, and time to reach exothermic peak. When the concentration of the thermogenic agent is 1.5 mol/L in the autogenous heat system, the range of temperature rise is 67°C, which achieves the target requirement of more than 50°C. Field application shows that the autogenous heat system can effectively reduce the viscosity of heavy oil, dissolve solid paraffin, clean organic scale, improve reservoir permeability, and increase heavy oil production. This paper applies autogenous heat technology to improving the efficiency of heavy oil recovery of the offshore oilfield. Research conclusions show that the autogenous heat system can effectively reduce the viscosity of heavy oil, improve reservoir permeability, and increase heavy oil production.

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Juan Li ◽  
Mei Han ◽  
Xiuting Han

In order to promote heavy oil recovery and solve the conventional plunger pump problems, which include wear, large leakage, and a stuck pump in the process of heavy oil production, this paper reports on the research and development of a new pump, and promotes its application in heavy oil recovery. With the use of the new pump, an advanced level of no leakage in a deep well with heavy oil is achieved and it is shown that the pump remarkably improves the pump volumetric efficiency.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5735
Author(s):  
Ali Telmadarreie ◽  
Japan J Trivedi

Enhanced oil recovery (EOR) from heavy oil reservoirs is challenging. High oil viscosity, high mobility ratio, inadequate sweep, and reservoir heterogeneity adds more challenges and severe difficulties during any EOR method. Foam injection showed potential as an EOR method for challenging and heterogeneous reservoirs containing light oil. However, the foams and especially polymer enhanced foams (PEF) for heavy oil recovery have been less studied. This study aims to evaluate the performance of CO2 foam and CO2 PEF for heavy oil recovery and CO2 storage by analyzing flow through porous media pressure profile, oil recovery, and CO2 gas production. Foam bulk stability tests showed higher stability of PEF compared to that of surfactant-based foam both in the absence and presence of heavy crude oil. The addition of polymer to surfactant-based foam significantly improved its dynamic stability during foam flow experiments. CO2 PEF propagated faster with higher apparent viscosity and resulted in more oil recovery compared to that of CO2 foam injection. The visual observation of glass column demonstrated stable frontal displacement and higher sweep efficiency of PEF compared to that of conventional foam. In the fractured rock sample, additional heavy oil recovery was obtained by liquid diversion into the matrix area rather than gas diversion. Aside from oil production, the higher stability of PEF resulted in more gas storage compared to conventional foam. This study shows that CO2 PEF could significantly improve heavy oil recovery and CO2 storage.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1693-1698
Author(s):  
Yi Ding ◽  
Guo Wei Qin ◽  
Peng Liu ◽  
Zi Li Fan ◽  
Hong Wei Xiao ◽  
...  

Heat self-generated CO2 technique is proposed, which is focused on the problems of recovery difficulty, poor effect steam soaking and so on for heavy oil reservoirs. This technology is combining of steam flooding and gas flooding and so on. Its main mechanism is the application of steam heating blowing agent to generate a large volume of gases (including CO2, NH3, etc) in the formation. While some of these gases acting with the oil to reduce the oil viscosity, some form miscible flooding to reduce water interfacial tension, so as to achieve the purpose of enhancing oil recovery. An optimized selection of the heat blowing agents was performed. By comparison the difference before and after the reaction of blowing agent solution, the increase of alkaline is occurred after the reaction, and is helpful to reduce oil viscosity and lower interfacial tension, etc. Studies indicate that heat-generating CO2 flooding technology can get a maximum viscosity reduction rate of 76.7%, oil-water interfacial tension decreased by 54.77%, further improve oil recovery by 4.17% based on the steam drive, which shows a technical advantage toward conventional EOR method. The field experiments indicate that the technique can greatly improve the oil production, which will provide a powerful technical supporting for the efficient development of heavy oil.


2019 ◽  
pp. 51 ◽  
Author(s):  
P. Pourafshary ◽  
H. Al Farsi

The primary heavy oil recovery is low due to the high viscosity and low mobility; hence, conventional thermal enhanced oil recovery methods such as steam flooding are widely applied to increase the oil production. New unconventional method such as microwave assisted gravity drainage (MWAGD) is under study the change the viscosity of the oil by microwave radiation. Different challenges such as heat loss and low efficiency are faced in unconventional thermal recovery methods especially in deep reservoirs. To improve the performance of unconventional methods, nanotechnology can play an important role. Nanomaterials due to their high surface to volume ratio, more heat absorbance, and more conductivity can be used in a novel approach called nanomaterial/microwave thermal oil recovery. In this work, several nanofluids prepared from nanoparticles such as γ-Alumina (γ-Al2O3), Titanium (IV) oxide (TiO2), MgO, and Fe3O4 were used to enhance the oil viscosity reduction in the porous media under MWAGD mechanism. Our tests showed that adding nanoparticles can increase the absorption of microwave radiation in the oil/ water system in the porous media. The magnitude of this increase is related to the type, particle size distribution in base fluid and, concentration of nanoparticles. Aluminum oxide nanoparticle was found to have the greatest effect on thermal properties of water. For example, only 0.05 wt.% of this nanoparticle, improves the alteration in temperature of water for around 100%. This change can affect the oil recovery and changed it from 37% to more than 40% under MWAGD. Hence, our experiments showed that besides other applications of nanotechnology in enhance oil recovery, heavy oil recovery can also be affected by nanomaterials.


SPE Journal ◽  
2020 ◽  
Vol 25 (03) ◽  
pp. 1113-1127 ◽  
Author(s):  
Liguo Zhong ◽  
Jianbin Liu ◽  
Xiaonan Yuan ◽  
Cheng Wang ◽  
Liyong Teng ◽  
...  

Summary There are a lot of sludges produced in oil production and storage processes in Liaohe Oil Field. Usually complicated chemical processes are involved in treating the sludge effectively and such surface-treatment processes are subject to high cost and environmental challenges. Therefore, the feasibility and performance of sludge injection into steam-stimulated wells, and sludge sequestration and associated heavy-oil-recovery improvement are investigated on the basis of results of laboratory research and field operation. The sludge originally produced from the reservoir comprises mainly water, some oil components, and solid phase such as mud and fine sand, and aggregation of the injected sludge components, except water, could block the void porous space. Actually, the sludge is buried into its origin, the reservoir. As the sludge is injected into the steamed reservoir through an enlarged pore at high injection pressure, the permeability of the formation could be significantly decreased (the permeability reduction rate could be more than 98% after sludge blocking in our experiments with sandpacked tubes), and the sludge blocking performance is related to the reactions of oil and solid separated from the sludge, including adherence to the sand surface, consolidation of the sands, and filling in the void porous space. Consequently, the sludge is stored in the steamed formation, and the water in the sludge is separated and produced. At the same time, steam conformance and heating efficiency could be improved by implementing a sludge blocking process, thereby significantly improving oil production. Sludge sequestration has been applied to 45 steamed wells in Shuguang Oilfield until 2018, and all the wells have been stimulated by 7–10 cycles of CSS process. The total sludge injection of the wells is up to 133,200 tons, and more than 15,000 tons of oil and solid separated from the sludge are deposited underground. At the same time, more than 20% increase in cyclic oil production on average is obtained by the sludge-injection process.


2021 ◽  
Author(s):  
Ali Telmadarreie ◽  
Christopher Johnsen ◽  
Steven L. Bryant

Abstract This study designs a novel complex fluid (foam/emulsion) using as main components gas, low-toxicity solvents (green solvents) which may promote oil mobilization, and synergistic foam stabilizers (i.e. nanoparticles and surfactants) to improve sweep efficiency. This nanoparticle-enabled green solvent foam (NGS-foam) avoids major greenhouse gas emissions from the thermal recovery process and improves the performance of conventional green solvent-based methods (non-thermal) by increasing the sweep efficiency, utilizing less solvent while producing more oil. Surfactants and nanoparticles were screened in static tests to generate foam in the presence of a water-soluble/oil-soluble solvent and heavy crude oil from a Canadian oil field (1600 cp). The liquid phase of NGS-foam contains surfactant, nanoparticle, and green solvent (GS) all dispersed in the water phase. Nitrogen was used as the gas phase. Fluid flow experiments in porous media with heterogeneous permeability structure mimicking natural environments were performed to demonstrate the dynamic stability of the NGS-foam for heavy oil recovery. The propagation of the pre-generated foam was monitored at 10 cm intervals over the length of porous media (40 cm). Apparent viscosity, pressure gradient, inline measurement of effluent density, and oil recovery were recorded/calculated to evaluate the NGS-foam performance. The outcomes of static experiments revealed that surfactant alone cannot stabilize the green solvent foam and the presence of carefully chosen nanoparticles is crucial to have stable foam in the presence of heavy oil. The results of NGS-foam flow in heterogeneous porous media demonstrated a step-change improvement in oil production such that more than 60% of residual heavy oil was recovered after initial waterflood. This value of residual oil recovery was significantly higher than other scenarios tested in this study (i.e. GS- water and gas co-injection, conventional foam without GS, GS-foam stabilized with surfactant only and GS-waterflood). The increased production occurred because NGS-foam remained stable in the flowing condition, improves the sweep efficiency and increases the contact area of the solvent with oil. The latter factor is significant: comparing to GS-waterflood, NGS-foam produces a unit volume of oil faster with less solvent and up to 80% less water. Consequently, the cost of solvent per barrel of incremental oil will be lower than for previously described solvent applications. In addition, due to its water solubility, the solvent can be readily recovered from the reservoir by post flush of water and thus re-used. The NGS-foam has several potential applications: recovery from post-CHOPS reservoirs (controlling mobility in wormholes and improving the sweep efficiency while reducing oil viscosity), fracturing fluid (high apparent viscosity to carry proppant and solvent to promote hydrocarbon recovery from matrix while minimizing water invasion), and thermal oil recovery (hot NGS-foam for efficient oil viscosity reduction and sweep efficiency improvement).


2019 ◽  
Author(s):  
Junhui Zhang ◽  
Hui Gao ◽  
Hangxian Lai ◽  
Shibin Hu ◽  
Quanhong Xue

Abstract Background: The progressive depletion of light crude oils has led to increased focus on efficient exploitation of heavy oil reserves to meet energy demand. Microbial enhanced oil recovery make a significant contribution to the recovery of heavy oils; however, most use bacteria, with less attention paid to the potential of fungi. Therefore, this study proposes the use of fungi in the form of extracellular enzymes to degrade heavy oil and improve its physicochemical property , thus increasing fluidity of heavy oil.Results: In this study, we investigated the efficiency of fungal extracellular enzymes in biotransformation and biodegradation of heavy oil fractions into light aliphatic and aromatic compounds and the feasibility of the use of such enzyme preparations in enhanced oil recovery. Two strains of Aspergillus spp., isolated from bitumen samples, showed good growth on plates of mineral salts medium with heavy oil as the sole carbon source. The fungal extracellular enzymes, with dehydrogenase and catechol 2,3-dioxygenase activities, exhibited the ability to degrade heavy oil, and coupled with abundant gas production. Gas chromatography analysis revealed a significant redistribution of n -alkanes in the heavy oil caused by the action of the fungal enzymes, resulting in an increase in individual n -alkanes. The viscosity of the heavy oil was decreased 66.33% by fungal enzymatic degradation. Conclusions: These results demonstrate the potential of extracellular enzymes from Aspergillus spp. for applications in enhanced heavy oil recovery, including biotransformation of heavy to lighter crude oil and byproduct biogas formation.


Sign in / Sign up

Export Citation Format

Share Document