scholarly journals Effect of Gambogic Acid on miR-199a-3p Expression and Cell Biological Behavior in Colorectal Cancer Cells

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xiaodong Wang ◽  
Yingchun Li ◽  
Haihua Zhou ◽  
Ning Han ◽  
Linlin Pan ◽  
...  

Colorectal cancer (CC), as a malignancy threatening life and health, has a rising incidence in recent years. It has been reported that gambogic acid (GA) has antitumor activity in various tumors, but its effect on CC remains to be elucidated. In this investigation, the influence of GA nanoparticles on microRNA-199a-3p (miR-199a-3p) in CC was analyzed to provide a reliable reference for future clinical practice. Through PCR detection, we first determined that miR-199a-3p presented low expression in CC and had a significant effect in predicting the onset and prognosis of CC. Through in vitro experiments, the enhanced CC cell viability after inhibition was determined; however, decreased cell viability and increased miR-199a-3p level were also observed after GA nanoparticles addition. Hence, GA nanoparticles may influence CC cell biological behaviors by modulating miR-199a-3p, providing a novel treatment scheme for CC in the future.

2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
M Rodeño Casado ◽  
J Roa Esparza ◽  
S Iturrizaga ◽  
C Mar Medina ◽  
I García-Alonso ◽  
...  

Abstract INTRODUCTION Some plant-based antioxidants, such as curcumin, have shown anti-tumour properties against breast carcinomas and gliomas. The aim of this piece of work is to assess the anti-tumour effect of curcumin on CC531 colorectal cancer cells, both in vitro and in vivo. MATERIAL AND METHODS On CC531 cultures, cell viability was analysed, as well as cell migration capacity (wound healing test), 24, 48 and 72 hours after treatment with curcumin (15, 20, 25 or 30 µM). Additionally, in WAG/RijHsd rats bearing CC531-induced liver implants, total and individual liver lobe tumour volume was quantified in untreated and curcumin-treated animals (200 mg/kg/day, oral). Furthermore, serum enzyme measurements (GOT, GPT, glucose, bilirubin, etc.) were carried out to assess possible effects on liver function. ANOVA and t tests were used to analyse the effects of curcumine treatment. RESULTS In vitro studies showed curcumin's greatest effects 48h after application, when all tested doses reduced cell proliferation by more than 30% (0.443±0.06 vs. 0.319±0.04, 0.302±0.06, 0.274±0.06 and 0.243±0.03, respectively; p < 0.0001). At 72 hours, the highest doses of curcumin (25 and 30 µM) reduced cell viability to less than 50%. Wound healing test also showed that curcumine also inhibits migration capacity. In vivo, curcumin reduced by 5.6 fold the tumour volume of liver implants (7.98±1.45 vs 1.41±1.33; p < 0.0001); however, the volume of healthy liver tissue was higher in untreated animals (10.91±1.01 vs 8.80±1.06; p > 0.01). CONCLUSIONS Curcumin has shown an anti-tumour effect against liver implants from colorectal cancer, both in vitro and in vivo, in this experimental model.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Simona Mareike Lüttgenau ◽  
Christin Emming ◽  
Thomas Wagner ◽  
Julia Harms ◽  
Justine Guske ◽  
...  

AbstractLoss of apical-basal polarity and downregulation of cell-cell contacts is a critical step during the pathogenesis of cancer. Both processes are regulated by the scaffolding protein Pals1, however, it is unclear whether the expression of Pals1 is affected in cancer cells and whether Pals1 is implicated in the pathogenesis of the disease.Using mRNA expression data and immunostainings of cancer specimen, we show that Pals1 is frequently downregulated in colorectal cancer, correlating with poorer survival of patients. We further found that Pals1 prevents cancer cell metastasis by controlling Rac1-dependent cell migration through inhibition of Arf6, which is independent of the canonical binding partners of Pals1. Loss of Pals1 in colorectal cancer cells results in increased Arf6 and Rac1 activity, enhanced cell migration and invasion in vitro and increased metastasis of transplanted tumor cells in mice. Thus, our data reveal a new function of Pals1 as a key inhibitor of cell migration and metastasis of colorectal cancer cells. Notably, this new function is independent of the known role of Pals1 in tight junction formation and apical-basal polarity.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Fuli Li ◽  
Tinglei Huang ◽  
Yao Tang ◽  
Qingli Li ◽  
Jianzheng Wang ◽  
...  

AbstractUtidelone (UTD1), a novel microtubule stabilizing agent, is an epothilone B analogue which was produced by genetic engineering. UTD1 has exhibited broad antitumor activity in multiple solid tumors. However, its activity and mechanism in colorectal cancer (CRC) remain to be studied. In this study, UTD1 dramatically inhibited CRC cell proliferation (with 0.38 µg/ml, 0.77 µg/ml IC50 in RKO and HCT116, respectively) in vitro. Immunofluorescence staining showed that UTD1 induced the formation of microtubule bundling and asters in RKO cells. Flow cytometry analysis demonstrated that UTD1 induced cell cycle to arrest in G2/M phase, subsequent apoptosis. Significantly, UTD1 exhibited stronger effect on inducing apoptosis than paclitaxel and 5-FU, especially in HCT15 cells which is ABCB1 high-expression. UTD1 exposure cleaved caspase-3 and poly ADP-ribose polymerase (PARP), decreased mitochondrial membrane potential, released cytochrome c, increased the production of active oxygen and activated c-Jun N-terminal kinase (JNK), suggesting ROS/JNK pathway was involved in this process. Moreover, UTD1 inhibited tumor growth and was more effective and safer compared with paclitaxel and 5-FU in RKO xenograft in nude mice. Taken together, our findings first indicate that UDT1 inhibits tumor growth in CRC xenograft model and may be a promising agent for CRC treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Ju-Huei Chien ◽  
Shan-Chih Lee ◽  
Kai-Fu Chang ◽  
Xiao-Fan Huang ◽  
Yi-Ting Chen ◽  
...  

Pogostemon cablin (PCa), an herb used in traditional Chinese medicine, is routinely used in the amelioration of different types of gastrointestinal discomfort. However, the mechanisms underlying the cancer suppression activity of PCa in colorectal cancer (CRC) cells have yet to be clarified. The aim of this study was to investigate the anticancer effects of PCa, specifically the induction of apoptosis in CRC cells. The growth inhibition curve of CRC cells following exposure to PCa was detected by an MTT assay. Moreover, PCa combined with 5-FU revealed a synergic effect of decreased cell viability. PCa inhibited cell proliferation and induced cell cycle arrest at the G0/G1 phase and cell apoptosis through regulation of associated protein expression. An in vivo study showed that PCa suppressed the growth of CRC via induction of cell apoptosis with no significant change in body weight or organ histology. Our results demonstrated that PCa inhibits the growth of CRC cells and induces apoptosis in vitro and in vivo, which suggests the potential applicability of PCa as an anticancer agent.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kuijie Liu ◽  
Hua Zhao ◽  
Hongliang Yao ◽  
Sanlin Lei ◽  
Zhendong Lei ◽  
...  

MicroRNAs are a class of small, noncoding RNAs that function as critical regulators of gene expression by targeting mRNAs for translational repression or degradation. In this study, we demonstrate that expression of microRNA-124 (miR-124) is significantly downregulated in colorectal cancer tissues and cell lines, compared to the matched adjacent tissues. We identified and confirmed inhibitor of apoptosis-stimulating protein of p53 (iASPP) as a novel, direct target of miR-124 using target prediction algorithms and luciferase reporter gene assays. Overexpression of miR-124 suppressed iASPP protein expression, upregulated expression of the downstream signaling molecule nuclear factor-kappa B (NF-κB), and attenuated cell viability, proliferation, and colony formation in SW480 and HT-29 colorectal cancer cells in vitro. Forced overexpression ofiASPPpartly rescued the inhibitory effect of miR-124 on SW480 and HT29 cell proliferation. Taken together, these findings shed light on the role and mechanism of action of miR-124, indicate that the miR-124/iASPP axis can regulate the proliferation of colorectal cancer cells, and suggest that miR-124 may serve as a potential therapeutic target for colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document