scholarly journals Network Pharmacology-Based Strategy and Molecular Docking to Explore the Potential Mechanism of Jintiange Capsule for Treating Osteoporosis

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhao Yang ◽  
Zhen-Zhen Yuan ◽  
Xin-Long Ma

Background. With the advent of ageing population, osteoporosis (OP) has already become a global challenge. Jintiange capsule is extensively applied to treat OP in China. Although recent studies demonstrate that it generates significant effects on strengthening bone, the exact mechanism of the jintiange capsule for treating OP remains unknown. Purpose. To understand the main ingredients of the jintiange capsule, predict the possible targets and the relevant signal transduction pathways, and explore the mechanism of the jintiange capsule for the treatment of OP. Methods. Main ingredients of the jintiange capsule, drug targets, and potential disease targets for OP were obtained from public databases. Molecular biological processes and signaling pathways were determined via bioinformatic analysis, containing protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). Subsequently, the disease-drug-ingredient-targets-pathways networks were constructed using Cytoscape. According to CytoNCA, core targets were acquired. Finally, the present study conducted molecular docking for better testing the abovementioned results. Results. In the current work, we found that 4 main ingredients of the jintiange capsule, 33 drug targets, 4745 potential disease targets for OP, and 12 overlapping targets were identified. PPI network containing 12 nodes and 25 edges proved that there existed a complex relationship. As revealed by GO functional annotation, the intersected targets were mostly associated with BP, CC, and MF. The targets were enriched to 368 items in BP, 27 items in CC, and 42 items in MF. They mainly included calcium ion homeostasis, calcium channel complex, and calcium channel regulator activity. According to KEGG pathway analysis, the intersected targets were mostly associated with Rap 1, cGMP-PKG, Ras, cAMP, calcium pathways, and so on. Based on the analysis with CytoNCA, we acquired 4 core targets, respectively—CALR, SPARC, CALM1, and CALM2. Besides, 2 core targets, CALR and CALM1, were selected for molecular docking experiments. Molecular docking revealed that the main ingredient, calcium phosphate, had good binding with the CALR protein and CALM1 protein. Conclusion. To conclude, the main ingredient of the jintiange capsule, particularly calcium phosphate, may interact with 2 targets, CALR and CALM1, and regulate multiple signaling pathways to treat OP. Additionally, this also benefits us in further understanding the mechanism of the jintiange capsule for treating OP.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ping Yang ◽  
Haifeng He ◽  
Shangfu Xu ◽  
Ping Liu ◽  
Xinyu Bai

Objective. Hua-Feng-Dan (HFD) is a Chinese medicine for stroke. This study is to predict and verify potential molecular targets and pathways of HFD against stroke using network pharmacology. Methods. The TCMSP database and TCMID were used to search for the active ingredients of HFD, and GeneCards and DrugBank databases were used to search for stroke-related target genes to construct the “component-target-disease” by Cytoscape 3.7.1, which was further filtered by MCODE to build a core network. The STRING database was used to obtain interrelationships by topology and to construct a protein-protein interaction network. GO and KEGG were carried out through DAVID Bioinformatics. Autodock 4.2 was used for molecular docking. BaseSpace was used to correlate target genes with the GEO database. Results. Based on OB ≥ 30% and DL ≥ 0.18, 42 active ingredients were extracted from HFD, and 107 associated targets were obtained. PPI network and Cytoscape analysis identified 22 key targets. GO analysis suggested 51 cellular biological processes, and KEGG suggested that 60 pathways were related to the antistroke mechanism of HFD, with p53, PI3K-Akt, and apoptosis signaling pathways being most important for HFD effects. Molecular docking verified interactions between the core target (CASP8, CASP9, MDM2, CYCS, RELA, and CCND1) and the active ingredients (beta-sitosterol, luteolin, baicalein, and wogonin). The identified gene targets were highly correlated with the GEO biosets, and the stroke-protection effects of Xuesaitong in the database were verified by identified targets. Conclusion. HFD could regulate the symptoms of stroke through signaling pathways with core targets. This work provided a bioinformatic method to clarify the antistroke mechanism of HFD, and the identified core targets could be valuable to evaluate the antistroke effects of traditional Chinese medicines.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xinyi Lu ◽  
Xingli Wu ◽  
Lin Jing ◽  
Lingjia Tao ◽  
Yingxuan Zhang ◽  
...  

Objective. To analyze the active compounds, potential targets, and diseases of JianPi Fu Recipe (JPFR) based on network pharmacology and bioinformatics and verify the potential biological function and mechanism of JPFR in vitro and in vivo. Methods. Network pharmacology databases including TCMSP, TCM-PTD, TCMID, and DrugBank were used to screen the active compounds and potential drug targets of JPFR. Cytoscape 3.7 software was applied to construct the interaction network between active compounds and potential targets. The DAVID online database analysis was performed to investigate the potential effective diseases and involved signaling pathways according to the results of the GO function and KEGG pathways enrichment analysis. To ensure standardization and maintain interbatch reliability of JPFR, High Performance Liquid Chromatography (HPLC) was used to establish a “chemical fingerprint.” For biological function validation, the effect of JPFR on the proliferation and migration of CRC cells in vitro was investigated by CCK-8 and transwell and wound healing assay, and the effect of JPFR on the growth and metastasis of CRC cells in vivo was detected by building a lung metastasis model in nude mice and in vivo imaging. For the potential mechanism validation, the expressions of MALAT1, PTBP-2, and β-catenin in CRC cells and transplanted CRC tumors were detected by real-time PCR, western blot, and immunohistochemical staining analysis. Results. According to the rules of oral bioavailability (OB) > 30% and drug-likeness (DL) > 0.18, 244 effective compounds in JPFR were screened out, as well as the corresponding 132 potential drug targets. By the analysis of DAVID database, all these key targets were associated closely with the cancer diseases such as prostate cancer, colorectal cancer, bladder cancer, small cell lung cancer, pancreatic cancer, and hepatocellular carcinoma. In addition, multiple signaling pathways were closely related to JPFR, including p53, Wnt, PI3K-Akt, IL-17, HIF-1, p38-MAPK, NF-κB, PD-L1 expression and PD-1 checkpoint pathway, VEGF, JAK-STAT, and Hippo. The systematical analysis showed that various active compounds of JPFR were closely connected with Wnt/β-catenin, EGFR, HIF-1, TGFβ/Smads, and IL6-STAT3 signaling pathway, including kaempferol, isorhamnetin, calycosin, quercetin, medicarpin, phaseol, spinasterol, hederagenin, beta-sitosterol, wighteone, luteolin, and isotrifoliol. For in vitro experiments, the migration and growth of human CRC cells were inhibited by the JPFR extract in a dose-dependent way, and the expression of MALAT1, PTBP-2, β-catenin, MMP7, c-Myc, and Cyclin D1 in CRC cells were downregulated by the JPFR extract in a dose-dependent way. For in vivo metastasis experiments, the numbers of lung metastasis were found to be decreased by the JPFR extract in a dose-dependent manner, and the expressions of metastasis-associated genes including MALAT1, PTBP-2, β-catenin, and MMP7 in the lung metastases were downregulated dose dependently by the JPFR extract. For the orthotopic transplanted tumor experiments, the JPFR extract could inhibit the growth of orthotopic transplanted tumors and downregulate the expression of c-Myc and Cyclin D1 in a dose-dependent manner. Moreover, the JPFR extract could prolong the survival time of tumor-bearing mice in a dose-dependent manner. Conclusions. Through effective network pharmacology analysis, we found that JPFR contains many effective compounds which may directly target cancer-associated signaling pathways. The in vitro and in vivo experiments further confirmed that JPFR could inhibit the growth and metastasis of CRC cells by regulating β-catenin signaling-associated genes or proteins.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Jing Xie ◽  
Jun Wu ◽  
Sihui Yang ◽  
Huaijun Zhou

Background. Aloe vera has long been considered an anticancer herb in different parts of the world. Objective. To explore the potential mechanism of aloe vera in the treatment of cancer using network pharmacology and molecule docking approaches. Methods. The active ingredients and corresponding protein targets of aloe vera were identified from the TCMSP database. Targets related to cancer were obtained from GeneCards and OMIM databases. The anticancer targets of aloe vera were obtained by intersecting the drug targets with the disease targets, and the process was presented in the form of a Venn plot. These targets were uploaded to the String database for protein-protein interaction (PPI) analysis, and the result was visualized by Cytoscape software. Go and KEGG enrichment were used to analyze the biological process of the target proteins. Molecular docking was used to verify the relationship between the active ingredients of aloe vera and predicted targets. Results. By screening and analyzing, 8 active ingredients and 174 anticancer targets of aloe vera were obtained. The active ingredient-anticancer target network constructed by Cytoscape software indicated that quercetin, arachidonic acid, aloe-emodin, and beta-carotene, which have more than 4 gene targets, may play crucial roles. In the PPI network, AKT1, TP53, and VEGFA have the top 3 highest values. The anticancer targets of aloe vera were mainly involved in pathways in cancer, prostate cancer, bladder cancer, pancreatic cancer, and non-small-cell lung cancer and the TNF signaling pathway. The results of molecular docking suggested that the binding ability between TP53 and quercetin was the strongest. Conclusion. This study revealed the active ingredients of aloe vera and the potential mechanism underlying its anticancer effect based on network pharmacology and provided ideas for further research.


2021 ◽  
Author(s):  
Zhiqiang Chen ◽  
Tong Lin ◽  
Xiaozhong Liao ◽  
Zeyun Li ◽  
Ruiting Lin ◽  
...  

Abstract Background: Cholangiocarcinoma refers to an epithelial cell malignancy with poor prognosis. Yinchenhao decoction (YCHD) showed positive effects on cancers, and associations between YCHD and cholangiocarcinoma remain unclear. This study aimed to screen out the effective active components of Yinchenhao decoction (YCHD) using network pharmacology, estimate their potential targets, screen out the pathways, as well as delve into the potential mechanisms on treating cholangiocarcinoma. Methods: By the traditional Chinese medicine system pharmacology database and analysis platform (TCMSP) as well as literature review, the major active components and their corresponding targets were estimated and screened out. Using the software Cytoscape 3.6.0, a visual network was established using the active components of YCHD and the targets of cholangiocarcinoma. Based on STRING online database, the protein interaction network of vital targets was built and analyzed. With the Database for Annotation, Visualization, and Integrated Discovery (DAVID) server, the gene ontology (GO) biological processes and the Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways of the targets enrichment were performed. The AutoDock Vina was used to perform molecular docking and calculate the binding affinity. The PyMOL software was utilized to visualize the docking results of active compounds and protein targets. In vivo experiment, the IC50 values and apoptosis rate in PI-A cells were detected using CCK-8 kit and Cell Cycle Detection Kit. The predicted targets were verified by the real-time PCR and western blot methods. Results: 32 effective active components with anti-tumor effects of YCHD were sifted in total, covering 209 targets, 96 of which were associated with cancer. Quercetin, kaempferol, beta-sitosterol, isorhamnetin, and stigmasterol were identified as the vital active compounds, and AKT1, IL6, MAPK1, TP53 as well as VEGFA were considered as the major targets. The molecular docking revealed that these active compounds and targets showed good binding interactions. These 96 putative targets exerted therapeutic effects on cancer by regulating signaling pathways (e.g., hepatitis B, the MAPK signaling pathway, the PI3K-Akt signaling pathway, and MicroRNAs in cancer). Our in vivo experimental results confirmed that YCHD showed therapeutic effects on cholangiocarcinoma by decreasing IC50 values, down-regulating apoptosis rate of cholangiocarcinoma cells, and lowering protein expressions. Conclusion:As predicted by network pharmacology strategy and validated by the experimental results, YCHD exerts anti-tumor effectsthrough multiple components, targets, and pathways, thereby providing novel ideas and clues for the development of preparations and the treatment of cholangiocarcinoma.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sizhen Gu ◽  
Yan Xue ◽  
Yang Gao ◽  
Shuyang Shen ◽  
Yuli Zhang ◽  
...  

Abstract Oral administration of indigo naturalis (IN) can induce remission in ulcerative colitis (UC); however, the underlying mechanism remains unknown. The main active components and targets of IN were obtained by searching three traditional Chinese medicine network databases such as TCMSP and five Targets fishing databases such as PharmMapper. UC disease targets were obtained from three disease databases such as DrugBank,combined with four GEO gene chips. IN-UC targets were identified by matching the two. A protein–protein interaction network was constructed, and the core targets were screened according to the topological structure. GO and KEGG enrichment analysis and bioGPS localization were performed,and an Herbs-Components-Targets network, a Compound Targets-Organs location network, and a Core Targets-Signal Pathways network were established. Molecular docking technology was used to verify the main compounds-targets. Ten core active components and 184 compound targets of IN-UC, of which 43 were core targets, were enriched and analyzed by bioGPS, GO, and KEGG. The therapeutic effect of IN on UC may involve activation of systemic immunity, which is involved in the regulation of nuclear transcription, protein phosphorylation, cytokine activity, reactive oxygen metabolism, epithelial cell proliferation, and cell apoptosis through Th17 cell differentiation, the Jak-STAT and IL-17 signaling pathways, toll-like and NOD-like receptors, and other cellular and innate immune signaling pathways. The molecular mechanism underlying the effect of IN on inducing UC remission was predicted using a network pharmacology method, thereby providing a theoretical basis for further study of the effective components and mechanism of IN in the treatment of UC.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Shiying Zhang ◽  
Zhiying Yuan ◽  
Huaying Wu ◽  
Weiqing Li ◽  
Liang Li ◽  
...  

Objective. To explore the effects of the Hedysarum multijugum Maxim.-Radix Salviae compound (Huangqi-Danshen Compound (HDC)) on oxidative capacity and cardiomyocyte apoptosis in rats with diabetic cardiomyopathy by a network pharmacology-based strategy. Methods. Traditional Chinese Medicine (TCM)@Taiwan, TCM Systems Pharmacology Database and Analysis Platform (TCMSP), TCM Integrated Database (TCMID), and High-Performance Liquid Chromatography (HPLC) technology were used to obtain and screen HDC’s active components, and the PharmMapper database was used to predict HDC human target protein targets. The DCM genes were collected from the GeneCards and OMIM databases, and the network was constructed and analyzed by Cytoscape 3.7.1 and the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Finally, HDC was used to intervene in diabetic cardiomyopathy (DCM) model rats, and important biological processes and signaling pathways were verified using techniques such as immunohistochemistry. Results. A total of 176 of HDC’s active components and 442 potential targets were obtained. The results of network analysis show that HDC can regulate DCM-related biological processes (such as negative regulation of the apoptotic process, response to hypoxia, the steroid hormone-mediated signaling pathway, cellular iron ion homeostasis, and positive regulation of phosphatidylinositol 3-kinase signaling) and signaling pathways (such as the HIF-1 signaling pathway, the estrogen signaling pathway, insulin resistance, the PPAR signaling pathway, the VEGF signaling pathway, and the PI3K-Akt signaling pathway). Animal experiments show that HDC can reduce fasting plasma glucose (FPG), HbA1c, and malondialdehyde (MDA) and increase superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) ( P < 0.05 ). The results of immunohistochemistry showed that HDC can regulate the protein expression of apoptosis-related signaling pathways in DCM rats ( P < 0.05 ). Conclusion. It was initially revealed that HDC improves DCM through its antiapoptotic and anti-inflammatory effects. HDC may play a therapeutic role by improving cardiomyocyte apoptosis in DCM rats.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199171
Author(s):  
ZiXin Yuan ◽  
Can Zeng ◽  
Bing Yu ◽  
Ying Zhang ◽  
TianShun Wang ◽  
...  

To investigate the mechanism of action of components of Yinma Jiedu granules in the treatment of coronavirus disease 2019 (COVID-19) using network pharmacology and molecular docking. The main chemical components of Yinma Jiedu granules were collected in the literature and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform database. Using the SwissTargetPrediction database, the targets of the active component were identified and further correlated to the targets of COVID-19 through the GeneCards database. The overlapping targets of Yinma Jiedu granules components and COVID-19 were identified as the research target. Using the Database for Annotation, Visualization and Integrated Discovery database to carry out the target gene function Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway annotation and Cytoscape 3.6.1 software was used to construct a “component-target-pathway” network. The protein-protein interaction network was built using Search Tool for the Retrieval of Interacting Genes/Proteins database. Using Discovery Studio 2016 Client software to study the virtual docking of key protein and active components. One hundred active components were screened from the Yinma Jiedu Granules that involved 67 targets, including mitogen-activated protein kinase 3 (MAPK3), epidermal growth factor receptor, tumor necrosis factor, tumor protein 53, and MAPK1. These targets affected 109 signaling pathways including hypoxia-inducible factor-1, apoptosis, and Toll-like receptor signaling pathways. Molecular docking results showed that the screened active components have a strong binding ability to the key targets. In this study, through network pharmacology and molecular docking, we justified the multicomponent, multitarget, and multipathways of Yinma Jiedu Granules in the treatment of COVID-19.


2020 ◽  
Author(s):  
Ma Donglai ◽  
Yuxin Jia ◽  
Mingdong Si ◽  
Huigai Sun ◽  
Huiru Du ◽  
...  

Abstract Background: Retrieve Curative effect of Six Gentlemen Modified Decoction (SGMD) in treating with coronavirus disease ( COVID-19 ) by network pharmacology and verify its authenticity by molecular docking. Methods: The chemical constituents, effective components, and action targets were screened using TCMSP. COVID-19 related targets were retrieved by the GeneCards and NCBI databases, and drug targets and disease targets were mapped by Venny to obtain potential targets for treatment. The regulatory network of traditional Chinese medicine (TCM) compounds was established with Cytoscape to obtain the key components, and the PPI network and its network topology were established with the Bisogenet and CytoNCA plug-ins to obtain the core targets. Bioconductor was used for GO function analysis and KEGG pathway analysis to obtain the relevant functions and pathways. Results: 173 effective components, 253 targets, and 348 targets related to COVID-19 were obtained after screening, 50 cross targets were shown, and the key components of the top 15 are flavonoids such as quercetin, luteolin, kaempferol, naringenin, licochalcone A, etc. The top 28 core targets include TP53, EGFR, SRC, AR, ABL1, and others. Biological processes such as the responses to metal ions, molecules of bacterial origin, lipopolysaccharide, toxic substances, and oxidative stress were involved. The main pathway involved the AGE−RAGE signaling pathway in diabetic complications as well as the TNF and IL-17 signaling pathways. The average binding energies of the first three core components connected with 6LU7 and 1R42 were -4.16 kJ/mol and -4.12 kJ/mol, respectively.Conclusion: The core compounds of SGMD can spontaneously combine with SARS-CoV-2 3CL hydrolase and ACE2 to treat COVID-19.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiang Yu ◽  
Peng Zhang ◽  
Kai Tang ◽  
Gengyang Shen ◽  
Honglin Chen ◽  
...  

Naringin (NG), as the most abundant component of Drynariae Rhizoma (Chinese name: Gusuibu), has been proved to be an antioxidant flavonoid on promoting osteoporotic fracture (OF) healing, but relevant research is scanty on the underlying mechanisms. We adopted target prediction, protein-protein interaction (PPI) analysis, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and molecular docking to establish a system pharmacology database of NG against OF. Totally 105 targets of naringin were obtained, including 26 common targets with OF. A total of 415 entries were obtained through GO Biological Process enrichment analysis ( P < 0.05 ), and 37 entries were obtained through KEGG pathway enrichment analysis with seven signaling pathways included ( P < 0.05 ), which were primarily concerned with p53, IL-17, TNF, estrogen, and PPAR signaling pathways. According to the results of molecular docking, naringin is all bound in the active pockets of the core targets with 3–9 hydrogen bonds through some connections such as hydrophobic interactions, Pi-Pi stacked interactions, and salt bridge, demonstrating that naringin binds tightly to the core targets. In general, naringin may treat OF through multiple targets and multiple pathways via regulating oxidative stress, etc. Notably, it is first reported that NG may regulate osteoclast differentiation and oxidative stress through the expression of the core targets so as to treat OF.


2021 ◽  
Author(s):  
Qingtao Jiang ◽  
Lei Han ◽  
Xin Liu ◽  
Feng Zhang

Abstract Fangji Huangqi Tang (FHT) is a classical formula widely used in Chinese clinical practice. In this study, a creative application of FHT for inflammation has been identified by network pharmacology-based framework. Specifically, a total of 17 bioactive compounds including 42 potential targets of FHT, and 205 related targets involved in inflammation were retrieved from mainstream databases and subjected to network analysis. 13 intersection targets indicated the principal elements linked to inflammation therapy. Top terms of Gene Ontology (GO) analysis were identified, while 7 related signaling pathways were revealed by Kyoto Encyclopedia of Genes and Genomes (KEGG) results. Subsequently, Calycosin-PTGS2 with tight binding affinity (BA) was manifested by molecular docking as the critical compound-target couple. Meaningful links between Calycosin and inflammation were implied through Arrowsmith, which overlapped with the findings in enrichment analysis, such as MAPK, NF-κB that could be regulators of PTGS2. In summary, the present study explored the potential targets and signaling pathways of FHT against inflammation, which may help to illustrate the mechanisms responsible for the action of FHT and provide a better understanding of its anti-inflammatory effects.


Sign in / Sign up

Export Citation Format

Share Document