scholarly journals Early Paleozoic Extension-Compression Transition and Formation of a Paleo-Oil Reservoir System in the NW Sichuan Basin: Implications for Deeply Buried Hydrocarbon Accumulation

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Xiao Liang ◽  
Shu-gen Liu ◽  
Liang-liang Wu ◽  
Bin Deng ◽  
Jing Li ◽  
...  

Owing to multiple tectonic events after the Late Triassic, the northern segment of the western Sichuan depression (NSWSCD) has a complex geological history of significant uplift and deeply buried. With abundant oil and gas play in the NSWSCD, the study of paleo-oil reservoir systems and early hydrocarbon accumulation in this area is of great significance for deep marine hydrocarbon distribution prediction in complex structural settings. Analysis on the northern section of the Mianyang-Changning Intracratonic Sag (MY-CN IS) and the Tianjingshan Paleouplift (TJS PU), the two Early Paleozoic tectonic units are laterally superimposed. Combined the reservoir bitumen of the Sinian Dengying Fm firstly, the biomarker (TT23/tT24, S21/S22, etc.) and Organic δ13C (lighter than 30‰) characteristics indicate that the Sinian-Jurassic paleo-oil system in the TJS PU area is the main source of Lower Cambrian organic-rich black shale. This is closely related to the superimposition and combination effects of the intracratonic sag and paleouplift. Therefore, this study establishes a geological-geochemical accumulation model through a combination of R o and fluid inclusion data. The No. 1 fault is an important zoning fault in the NSWSCD, which significantly controls the division of the oil-gas zone. The process of paleo-oil reservoir destroyed directly only exists in the frontal deformation zone. The deep marine strata of the eastern No. 1 fault demonstrate the four-center hydrocarbon accumulation processes, which include oil generation, gas generation, gas storage, and gas preservation. The superdeep Dengying Fm has long-term exploration potential in the NSWSCD.


2016 ◽  
Vol 35 (1) ◽  
pp. 54-74 ◽  
Author(s):  
Xiaoping Liu ◽  
Zhijun Jin ◽  
Guoping Bai ◽  
Jie Liu ◽  
Ming Guan ◽  
...  

The Proterozoic–Lower Paleozoic marine facies successions are developed in more than 20 basins with low exploration degree in the world. Some large-scale carbonate oil and gas fields have been found in the oldest succession in the Tarim Basin, Ordos Basin, Sichuan Basin, Permian Basin, Williston Basin, Michigan Basin, East Siberia Basin, and the Oman Basin. In order to reveal the hydrocarbon enrichment roles in the oldest succession, basin formation and evolution, hydrocarbon accumulation elements, and processes in the eight major basins are studied comparatively. The Williston Basin and Michigan Basin remained as stable cratonic basins after formation in the early Paleozoic, while the others developed into superimposed basins undergone multistage tectonic movements. The eight basins were mainly carbonate deposits in the Proterozoic–early Paleozoic having different sizes, frequent uplift, and subsidence leading to several regional unconformities. The main source rock is shale with total organic carbon content of generally greater than 1% and type I/II organic matters. Various types of reservoirs, such as karst reservoir, dolomite reservoir, reef-beach body reservoirs are developed. The reservoir spaces are mainly intergranular pore, intercrystalline pore, dissolved pore, and fracture. The reservoirs are highly heterogeneous with physical property changing greatly and consist mainly of gypsum-salt and shale cap rocks. The trap types can be divided into structural, stratigraphic, lithological, and complex types. The oil and gas reservoir types are classified according to trap types where the structural reservoirs are mostly developed. Many sets of source rocks are developed in these basins and experienced multistage hydrocarbon generation and expulsion processes. In different basins, the hydrocarbon accumulation processes are different and can be classified into two types, one is the process through multistage hydrocarbon accumulation with multistage adjustment and the other is the process through early hydrocarbon accumulation and late preservation.



2012 ◽  
Vol 616-618 ◽  
pp. 26-31
Author(s):  
Ming Jian Wang ◽  
Xun Hua Zhang

The energy situation of China has been very tough. Our country’s oil is heavily dependent on imports and lack of oil and gas reserve. The shortage of oil and gas resource has become an important factor which restricts our national economy health and sustainable development. Guided by the theory of petroleum system, we analyzed the Mesozoic-Palaeozoic marine strata hydrocarbon accumulation elements and conditions of the sourthern depression in Southern Yellow Sea Basin and concluded the hydrocarbon accumulation pattern in order to find the reserving oil and gas. There are seven source-reservoir-cap assemblages. Different tectonic units experienced different tectonic evolution history. The source rock of Lower Palaeozoic, Upper Palaeozoic and Lower Triassic have experienced four, three and two hydrocarbon generation stages separately in the depression. But the source rock of Lower Palaeozoic and Upper Palaeozoic in the salient have only experienced two and one hydrocarbon generation stages separately. Hydrocarbon generated by Mesozoic-Palaeozoic source rock migrated to the traps by fault, crack and unconformity. Lithologic trap, broad anticlinal trap and fault-lithologic trap are the main types in the study area. By the analysis of Mesozoic-Palaeozoic marine hydrocarbon accumulation in the sourthern depresssion, we concluded two accumulation patterns which are the original lithologic reservoir in the Mesozoic-Palaeozoic marine strata and fault-lithologic reservoir in the Mesozoic-Cenozoic terrestrial strata. These results will help to predict the oil and gas resources.



1985 ◽  
Vol 25 (1) ◽  
pp. 34 ◽  
Author(s):  
W.G. Townson

The Officer Basin described in this paper includes four Proterozoic to Lower Palaeozoic sub-basins (Gibson, Yowalga, Lennis, Waigen) which extend in a northwest to southeast belt across 200 000 sq. km of central Western Australia. These sub-basins are bounded by Archaean to Proterozoic basement blocks and are almost entirely concealed by a veneer of Permian and Cretaceous sediments. Depth to magnetic basement locally exceeds eight kilometres.Until recently, information on the sub-surface geology was limited to shallow levels, based on the results of a petroleum exploration campaign in the 1960s and the work of State and Federal Geological Surveys. In 1980, the Shell Company of Australia was awarded three permits (46 200 sq. km) covering the Yowalga and Lennis Sub-basins. The results of 4700 km of seismic data and three deep wildcat wells, combined with gravity, aeromagnetic, Landsat, outcrop and corehole information, has led to a better understanding of the regional subsurface geology.The Lennis Sub-basin appears to contain Lower to Middle Proterozoic sediments, whereas the Yowalga Sub- basin is primarily an Upper Proterozoic to Lower Cambrian sequence which comprises a basal clastic section, a middle carbonate and evaporite sequence and an upper clastic section. Widespread Middle Cambrian basalts cap the Upper Proterozoic to Lower Cambrian prospective sequence. Late Proterozoic uplift resulted in salt- assisted gravity tectonics leading to complex structural styles, especially in the basin axis.Despite oil shows, organic matter in the oil and gas generation windows and reservoir-quality sandstones with interbedded shales, no convincing source rocks or hydrocarbon accumulations have yet been located. The area remains, however, one of the least explored basins in Australia.



2012 ◽  
Vol 616-618 ◽  
pp. 816-820
Author(s):  
Yu Sun ◽  
Shi Zhong Ma ◽  
Bai Quan Yan ◽  
Chen Chen

Types of found reservoirs and its distribution characteristics of Putaohua oil layer in the Sanzhao Sag were analyzed. The controlling factors of hydrocarbon distribution were investigated. Sanzhao Sag is Sag-wide oil-bearing, but its distribution of oil and water is extremely complicated. The reservoir types are mainly fault block reservoirs, low amplitude structure reservoirs, fault-lithologic reservoirs and lithologic reservoirs. The distribution of reservoirs is mainly controlled by three geological factors: first, long-term inherited nose-like structure is predominant direction of petroleum migration; it induced oil and gas migration at a critical period of hydrocarbon accumulation and formed oil-gas accumulation area. Second, fault across main-line of hydrocarbon migration and high angle skew plug off hydrocarbon, and its side adjacent to Sag is a large number of hydrocarbon accumulation areas. Third, multi-fault region can easily form a fault (-lithological) reservoir accumulation area in the slope of sag.



Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4570
Author(s):  
Aman Turakhanov ◽  
Albina Tsyshkova ◽  
Elena Mukhina ◽  
Evgeny Popov ◽  
Darya Kalacheva ◽  
...  

In situ shale or kerogen oil production is a promising approach to developing vast oil shale resources and increasing world energy demand. In this study, cyclic subcritical water injection in oil shale was investigated in laboratory conditions as a method for in situ oil shale retorting. Fifteen non-extracted oil shale samples from Bazhenov Formation in Russia (98 °C and 23.5 MPa reservoir conditions) were hydrothermally treated at 350 °C and in a 25 MPa semi-open system during 50 h in the cyclic regime. The influence of the artificial maturation on geochemical parameters, elastic and microstructural properties was studied. Rock-Eval pyrolysis of non-extracted and extracted oil shale samples before and after hydrothermal exposure and SARA analysis were employed to analyze bitumen and kerogen transformation to mobile hydrocarbons and immobile char. X-ray computed microtomography (XMT) was performed to characterize the microstructural properties of pore space. The results demonstrated significant porosity, specific pore surface area increase, and the appearance of microfractures in organic-rich layers. Acoustic measurements were carried out to estimate the alteration of elastic properties due to hydrothermal treatment. Both Young’s modulus and Poisson’s ratio decreased due to kerogen transformation to heavy oil and bitumen, which remain trapped before further oil and gas generation, and expulsion occurs. Ultimately, a developed kinetic model was applied to match kerogen and bitumen transformation with liquid and gas hydrocarbons production. The nonlinear least-squares optimization problem was solved during the integration of the system of differential equations to match produced hydrocarbons with pyrolysis derived kerogen and bitumen decomposition.



2013 ◽  
Vol 734-737 ◽  
pp. 1286-1289 ◽  
Author(s):  
Lin Cong ◽  
Wen Long Li ◽  
Jing Chao Lei ◽  
Ru Bin Li

Internationally the research of low permeability oil reservoir is a difficult point in the exploration and development of oil and gas field. This thesis, based on the research methods of low permeability reservoirs at home and abroad, summaries several major problems encountered in the process of low permeability oil exploration and development under the current technical conditions as well as the corresponding, but more effective technical measures that need to be constantly improved. And that exploration and development of low permeability of the reservoir will be the main battle field for some time in the future of oil exploration and development.



2013 ◽  
Vol 734-737 ◽  
pp. 1175-1178
Author(s):  
Hong Qi Yuan ◽  
Ying Hua Yu ◽  
Fang Liu

Based on the analysis of the relationships between the conditions of structures, sedimentations, source rocks, cap rocks, faults, oil and gas migration passages and traps and hydrocarbon accumulation, the controlling factors of hydrocarbon accumulation and distribution was studied in Talaha-changjiaweizi area. It is held that the source rocks control the hydrocarbon vertical distribution, the drainage capabilities control the hydrocarbon plane distribution, fracture belts control the hydrocarbon accumulation of Talaha syncline, underwater distributary channel is a favorable accumulation environment and reservoir physical properties control the oil and water distributions. Therefore, it is concluded that source rocks, fracture belts, sedimentary microfacies and reservoir physical properties are the main controlling factors of hydrocarbon accumulation and distribution in Talaha-changjiaweizi area.



2021 ◽  
Vol 76 (2) ◽  
pp. 191-203
Author(s):  
A. G. Kalmykov ◽  
D. R. Gafurova ◽  
M. S. Tikhonova ◽  
O. N. Vidishcheva ◽  
D. A. Ivanova ◽  
...  


2018 ◽  
Vol 6 (4) ◽  
pp. SM39-SM50
Author(s):  
Jingbo Wang ◽  
Zhongshan Qi ◽  
Penggui Jing ◽  
Tianfa Zheng ◽  
Yanqi Li ◽  
...  

Geologic studies indicate that the platform-margin reef-shallow facies in Permo-Triassic marine strata in the Micang-Dabashan foothill belt in the Sichuan Basin are favorable exploration targets for oil and gas exploration. However, the typical dual-complexity problem (complex surface condition and subsurface structure) brings a great challenge for seismic technology targeting of those potential oil and gas reservoirs. To overcome this problem, varieties of advanced seismic acquisition and processing methods have been used to improve the imaging quality of piedmont seismic data since 2000. Some improvements have been achieved: The reflection waves from the far offset and deep layer can be acquired in shot gathers from limestone outcropped areas, and the signal-to-noise ratio (S/N) of reflection and diffraction waves in the stack section has been enhanced significantly so as to reveal amounts of valuable geologic information. The resolution and the S/N of seismic migration imaging for the strong fold zone in marine strata have been improved partially, so that the structure of the step-fault zone and the enveloping of gypsum rock are clearer than those revealed by the old seismic section. Even so, actual drilling data demonstrate that the subsurface structures of the foothill belt are far more complex than those revealed by the current seismic imaging results. Therefore, postdrilling evaluation for the validity of seismic techniques implemented in the Nanjiang and Zhenba piedmont zone has been carried out. The results indicate that the current acquisition scheme and processing workflow cannot completely fulfill the requirements of high-precision velocity modeling and migration imaging of complex structures (such as footwalls of thrust fault and small-scale fault blocks) in the piedmont zone, especially when the rugged surface and the widespread limestone outcrop appear simultaneously. Finally, we have developed some potential needs of seismic theories and techniques in the foothill belt, including seismic wave propagation, acquisition, and processing technology.



2016 ◽  
pp. 93-97
Author(s):  
D. G. Lapin ◽  
D. A. Fomin ◽  
B. B. Kvesko

The article considers the most effective and environmentally friendly methods of utilization of associated petroleum gas (APG) for advanced oil and gas companies, as well as the developed method of utilization of associated gas using downhole steam-gas generator. The downhole steamgas generator burns APG at the bottomhole in the combustion chamber, and the combustion products - nitrogen and carbon dioxide - are supplied to the oil reservoir. A method for calculating the theoretical amount of air and combustion products is proposed.



Sign in / Sign up

Export Citation Format

Share Document