scholarly journals Screening for Sarcopenia (Physical Frailty) in the COVID-19 Era

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Amira Mohammed Ali ◽  
Hiroshi Kunugi

Although the numbers of aged populations have risen considerably in the last few decades, the current coronavirus disease 2019 (COVID-19) has revealed an extensive vulnerability among these populations. Sarcopenia is an age-related disorder that increases hospitalization, dependencies, and mortality in older adults. It starts to develop in midlife or even earlier as a result of unbalanced diet/poor nutrition and low levels of physical activity, in addition to chronic disorders such as obesity and diabetes mellitus. Given that social isolation is adopted as the most protective measure against COVID-19, the level of physical activity and the intake of adequate diet have considerably declined, especially among older adults—denoting an increased possibility for developing sarcopenia. Research also shows a higher vulnerability of sarcopenic people to COVID-19 as well as the development of wasting disorders such as sarcopenia and cachexia in a considerable proportion of symptomatic and recovering COVID-19 patients. Muscular wasting in COVID-19 is associated with poor prognosis. Accordingly, early detection and proper management of sarcopenia and wasting conditions in older adults and COVID-19 patients may minimize morbidity and mortality during the current COVID-19 crisis. This review explored different aspects of screening for sarcopenia, stressing their relevance to the detection of altered muscular structure and performance in patients with COVID-19. Current guidelines recommend prior evaluation of muscle strength by simple measures such as grip strength to identify individuals with proven weakness who then would be screened for muscle mass loss. The latter is best measured by MRI and CT. However, due to the high cost and radiation risk entailed by these techniques, other simpler and cheaper techniques such as DXA and ultrasound are given preference. Muscle loss in COVID-19 patients was measured during the acute phase by CT scanning of the pectoralis muscle simultaneously during a routine check for lung fibrosis, which seems to be an efficient evaluation of sarcopenia among those patients with no additional cost. In recovering patients, muscle strength and physical performance have been evaluated by electromyography and traditional tests such as the six-minute walk test. Effective preventive and therapeutic interventions are necessary in order to prevent muscle loss and associated physical decline in COVID-19 patients.

2021 ◽  
Vol 10 (23) ◽  
pp. 5552
Author(s):  
Silvia Giovannini ◽  
Fabrizio Brau ◽  
Raffaele Forino ◽  
Andrea Berti ◽  
Federica D’Ignazio ◽  
...  

Age-related muscle loss is a phenomenon that has been extensively studied in recent decades. Sarcopenia is a multisystem disease, which predisposes to muscle weakness and frailty. At around 50 years of age, an individual begins to lose muscle strength, although this becomes more evident after 70. Sarcopenia is a condition typically found in older adults but can also affect younger people. Sarcopenia is a preventable and treatable condition. In past years, methods and tools to recognize the condition early have been researched. For the development of therapeutic interventions, agreement on diagnosis is fundamental. In recent years, a possible role of ultrasonography in the diagnosis of sarcopenia has been evaluated, compared with the best-known techniques.


Sports ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 23 ◽  
Author(s):  
Nobuko Hongu ◽  
Mieko Shimada ◽  
Rieko Miyake ◽  
Yusuke Nakajima ◽  
Ichirou Nakajima ◽  
...  

Stair climbing provides a feasible opportunity for increasing physical activity (PA) in daily living. The purpose of this study was to examine the daily walking and stair-climbing steps among healthy older adults (age: 74.0 ± 4.9 years; Body Mass Index (BMI): 22.3 ± 2.5 kg/m2). Participants (34 females and 15 males) attended a weekly 6-month community-based PA program. During the entire program period, daily walking and stair-climbing steps were recorded using a pedometer (Omron, HJA-403C, Kyoto, Japan). Before and after the 6-month program, height, body weight and leg muscle strength were assessed. After the 6-month program, the mean walking and stair-climbing steps in both women and men increased significantly (p ≤ 0.01). Daily stair-climbing steps increased about 36 steps in women and 47 steps in men. At the end of 6 months, only male participants had significant correlation between the number of stair steps and leg muscle strength (r = 0.428, p = 0.037). This study reported that healthy older adults attending the community-based PA program had regular stair-climbing steps during daily living. Promoting stair climbing as an exercise routine was feasible to increase their walking and stair-climbing steps.


Author(s):  
Marissa A. Gogniat ◽  
Catherine M. Mewborn ◽  
Talia L. Robinson ◽  
Kharine R. Jean ◽  
L. Stephen Miller

The population of older adults is increasing, indicating a need to examine factors that may prevent or mitigate age-related cognitive decline. The current study examined whether microstructural white matter characteristics mediated the relation between physical activity and executive function in older adults without any self-reported psychiatric and neurological disorders or cognitive impairment (N = 43, mean age = 73 y). Physical activity was measured by average intensity and number of steps via accelerometry. Diffusion tensor imaging was used to examine microstructural white matter characteristics, and neuropsychological testing was used to examine executive functioning. Parallel mediation models were analyzed using microstructural white matter regions of interest as mediators of the association between physical activity and executive function. Results indicated that average steps was significantly related to executive function (β = 0.0003, t = 2.829, P = .007), while moderate to vigorous physical activity was not (β = 0.0007, t = 1.772, P = .08). White matter metrics did not mediate any associations. This suggests that microstructural white matter characteristics alone may not be the mechanism by which physical activity impacts executive function in aging.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 111
Author(s):  
Jort Veen ◽  
Diego Montiel-Rojas ◽  
Fawzi Kadi ◽  
Andreas Nilsson

The role of daily time spent sedentary and in different intensities of physical activity (PA) for the maintenance of muscle health currently remains unclear. Therefore, we investigated the impact of reallocating time spent in different PA intensities on sarcopenia risk in older adults, while considering PA type (muscle strengthening activities, MSA) and protein intake. In a sample of 235 community-dwelling older adults (65–70 years), a sarcopenia risk score (SRS) was created based on muscle mass assessed by bioimpedance, together with handgrip strength and performance on the five times sit-to-stand (5-STS) test assessed by standardized procedures. Time spent in light-intensity PA (LPA), moderate-to-vigorous PA (MVPA), and being sedentary was assessed by accelerometry, and PA type (MSA) by self-report. Linear regression models based on isotemporal substitution were employed. Reallocating sedentary time to at least LPA was significantly (p < 0.05) related to a lower SRS, which remained evident after adjustment by PA type (MSA) and protein intake. Similarly, reallocating time in LPA by MVPA was related to a significantly (p < 0.05) lower SRS. Our results emphasize the importance of displacing sedentary behaviours for more active pursuits, where PA of even light intensities may alleviate age-related deteriorations of muscle health in older adults.


2020 ◽  
Vol 21 (2) ◽  
pp. 89-107
Author(s):  
Reona Chiba ◽  
Yuki Ohashi ◽  
Akiko Ozaki

Purpose Several epidemiological studies have reported an age-related increase in the prevalence of sleep disturbances. This study aims to investigate the relationship between sleep and sarcopenia/frailty in older adults and clarify issues that remain to be addressed in future studies. Design/methodology/approach PubMed was searched for relevant studies with the following keywords in the title: “sleep” and “sarcopenia” or “sleep” and “frailty.” A total of 15 studies published in English between 1998 and 2018 were reviewed. Findings Among the four studies that examined the relationship between sarcopenia and sleep, two reported that long or short sleep duration increased the risk of sarcopenia and this association was more pronounced in women than men. Among the seven studies examining the relationship between frailty and sleep, four reported that higher Pittsburgh Sleep Quality Index (PSQI) scores were associated with an increased risk of frailty. Practical implications Most previous studies have focused on interventions targeting a single area such as muscle strength or exercise habits, in older adults at risk for frailty. The results suggest that interventions targeting improved sleep may positively impact the maintenance of muscle strength. Originality/value The literature review revealed that too much or too little sleep increases the risk of sarcopenia in older adults. Further, sleep deprivation, greater night-time wakefulness and reduced sleep quality increase the risk of frailty. Interestingly, the risk of mortality is increased in individuals with daytime functional disorders such as excessive drowsiness or napping habits.


Author(s):  
Julia Seinsche ◽  
Wiebren Zijlstra ◽  
Eleftheria Giannouli

In order to design effective interventions to prevent age-related mobility loss, it is important to identify influencing factors. The concept of “motility” by Kaufmann et al. subdivides such factors into three categories: “access”, “skills”, and “appropriation”. The aim of this study was to assemble appropriate quantitative assessment tools for the assessment of these factors in frail older adults and to get first insights into their relative contribution for life-space and physical activity-related mobility. This is an exploratory cross-sectional study conducted with twenty-eight at least prefrail, retired participants aged 61–94. Life-space mobility was assessed using the “University of Alabama at Birmingham Life-space Assessment” (LSA) and physical activity using the “German Physical Activity Questionnaire” (PAQ50+). Factors from the category “appropriation”, followed by factors from the category “skills” showed the strongest associations with the LSA. Factors from the category “access” best explained the variance for PAQ50+. This study’s findings indicate the importance of accounting for and examining comprehensive models of mobility. The proposed assessment tools need to be explored in more depth in longitudinal studies with larger sample sizes in order to yield more conclusive results about the appropriateness of the motility concept for such purposes.


2018 ◽  
Vol 125 (5) ◽  
pp. 1468-1474 ◽  
Author(s):  
Yoshihiro Fukumoto ◽  
Yosuke Yamada ◽  
Tome Ikezoe ◽  
Yuya Watanabe ◽  
Masashi Taniguchi ◽  
...  

Ultrasonic echo intensity (EI), an easy-to-use measure of intramuscular fat and fibrous tissues, is known to increase with aging. However, age-related changes in EI have not been examined in a longitudinal design. The objective of this study was to investigate 4-yr longitudinal changes in the EI of the quadriceps femoris in older adults, based on difference in physical activity (PA). This study included 131 community-dwelling older adults with a mean age of 72.9 ± 5.2 yr. Subcutaneous fat thickness (FT), muscle thickness (MT), and EI of the quadriceps femoris were measured by ultrasound. Isometric knee extensor strength was also measured. PA was assessed using a questionnaire at baseline, and participants were classified into the high or low PA groups. In 4 yr, a significant decrease in FT, MT, and strength was observed in both groups ( P < 0.05), whereas a significant decrease in EI was observed only in the high PA group ( P < 0.05). Multiple linear regression analyses revealed that the difference in PA was a significant predictor of 4-yr changes in MT (β = 0.189, P = 0.031) and EI (β = −3.145, P = 0.045) but not in the body mass index, FT, or strength adjusted for potential confounders. The present findings suggest that greater PA has a positive effect on longitudinal changes in the MT and EI of the quadriceps femoris in older adults. In addition, greater PA may contribute to a future decrease in EI, and an increase in EI may not occur in 4 yr, even in older adults with lesser PA. NEW & NOTEWORTHY Our results suggest that greater physical activity (PA) may mitigate future changes in muscle thickness and echo intensity (EI). A decrease in EI over 4 yr was observed in older adults with greater PA, and an increase in EI was not observed, even in older adults with smaller PA. Several cross-sectional studies demonstrated an increase in EI with aging. Additionally, the results of our longitudinal study suggest that an age-related increase in EI may be moderated after the old-age period.


2017 ◽  
Vol 73 (1) ◽  
pp. 88-94 ◽  
Author(s):  
M Loring Bradlee ◽  
Jabed Mustafa ◽  
Martha R Singer ◽  
Lynn L Moore

2017 ◽  
Vol 49 (5S) ◽  
pp. 2
Author(s):  
Nobuko Hongu ◽  
Mieko Shimada ◽  
Rieko Miyake ◽  
Yusuke Nakajima ◽  
Ichirou Nakajima ◽  
...  

2014 ◽  
Vol 116 (11) ◽  
pp. 1481-1490 ◽  
Author(s):  
Thomas W. Buford ◽  
R. Gavin MacNeil ◽  
Launa G. Clough ◽  
Marvin Dirain ◽  
Bhanuprasad Sandesara ◽  
...  

Repair of skeletal muscle after injury is a key aspect of maintaining proper musculoskeletal function. Studies have suggested that regenerative processes, including myogenesis and angiogenesis, are impaired during advanced age, but evidence from humans is limited. This study aimed to compare active muscle regeneration between healthy young and older adults. We evaluated changes in clinical, biochemical, and immunohistochemical indices of muscle regeneration at precisely 2 (T2) and 7 (T3) days following acute muscle injury. Men and women, aged 18-30 and ≥70 years, matched for gender and body mass index, performed 150 unilateral, eccentric contractions of the plantar flexors at 110% of one repetition maximum. Data were analyzed using analysis of covariance, adjusted for gender, habitual physical activity, and baseline level of the outcome. A total of 30 young ( n = 15; 22.5 ± 3.7 yr) and older ( n = 15; 75.8 ± 5.0 yr) adults completed the study. Following muscle injury, force production declined 16% and 14% in young and older adults, respectively, by T2 and in each group, returned to 93% of baseline strength by T3. Despite modest differences in the pattern of response, postinjury changes in intramuscular concentrations of myogenic growth factors and number of myonuclear (4′,6-diamidino-2-phenylindole+ and paired box 7+) cells were largely similar between groups. Likewise, postinjury changes in serum and intramuscular indices of inflammation (e.g., TNF-α and monocyte chemoattractant protein-1) and angiogenesis (e.g., VEGF and kinase insert domain receptor) did not differ significantly between groups. These findings suggest that declines in physical activity and increased co-morbidity may contribute to age-related impairments in active muscle regeneration rather than aging per se.


Sign in / Sign up

Export Citation Format

Share Document