scholarly journals Full-Duplex UAV Legitimate Surveillance System against a Suspicious Source with Artificial Noise

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Shen Yi ◽  
Pan Zhiwen ◽  
Liu Nan ◽  
You Xiaohu

We propose a legal full-duplex unmanned aerial vehicle (UAV) surveillance system in the presence of the ground-to-ground suspicious link with antisurveillance technology. UAV performs passive surveillance and active jamming simultaneously, and the suspicious source with multiantenna employs artificial noise to avoid being monitored. In order to ensure effective surveilling, we adopt two beamforming schemes, namely, maximum ratio transmission (MRT)/receiving zero-forcing (RZF) and transmitting zero-forcing (TZF)/maximum ratio combing (MRC), for MIMO UAV. For the two beamforming schemes, we derive the surveilling nonoutage probability in a closed-form expression and analyze the surveilling performance under different system environments. Monte Carlo (MC) simulation validates the correctness of the formula.

Electronics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 407
Author(s):  
Yi Shen ◽  
Zhiwen Pan ◽  
Nan Liu ◽  
Xiaohu You

In this paper, we propose a legitimate surveillance system, where a full-duplex unmanned aerial vehicle (UAV) legitimate monitor with simultaneous passive surveilling and active jamming is deployed to monitor a suspicious communication link between a dubious pair on the ground. Two different scenarios for the UAV, single-input single-output (SISO) and multiple-input multiple-output (MIMO), are studied. Three low-complexity linear beamforming schemes, transmit zero-forcing (TZF)/maximum ratio combing (MRC), maximum ratio transmission (MRT)/receive zero-forcing (RZF), and maximum ratio transmission (MRT)/maximum ratio combing (MRC) are considered for MIMO UAV. The surveilling non-outage probability is derived and analyzed, and optimal jamming power is obtained. Simulation and numerical results are used to validate the derivation.


Author(s):  
Ling Yang ◽  
Weiwei Yang ◽  
Jia Tu ◽  
Xingbo Lu ◽  
Liang Tang ◽  
...  

In this paper, we consider a covert communication system with a multi-antenna full-duplex (FD) receiver to enhance covert performance. More precisely, the receiver Bob (i.e., multiple antennas) selects the best antenna to receive the covert message, and then it sends artificial noise (AN) to the warden Willie causing uncertainty by utilizing an antenna among the remaining antennas. In order to take full advantage of multi-antenna technology, we consider two cases: (1) Willie does not know which antenna Bob chooses to send AN, and Willie knows only part of the channel information. (2) Willie knows which antenna Bob chooses to send AN, and Willie knows all the channel information. Based on the analysis of the optimal detection threshold, we derive the minimum detection error probability of the two cases. Furthermore, given the pre-determined convert constraints, the closed-form expression of the maximum effective convert rate is derived. When the power of AN sent by Bob is greater than that of covert message sent by the sender Alice, surprised research results are shown: (1) the detection error rate of case 1 is higher than that of case 2. (2) the effective covert rate of case 1 is always lower than that of case 2. The simulation results show that the proposed scheme is more conducive to sending covert messages for Alice; in addition, the numerical results imply that the maximum effective covert rate of the system using the multi-antenna FD receiver is significantly higher than that of the traditional dual-antenna FD receiver system.


2021 ◽  
Author(s):  
Van Vo Nhan ◽  
Dang Ngoc Cuong ◽  
Tran Ban Thach ◽  
Hung Tran

In this paper, the system performance of an energy harvesting (EH) unmanned aerial vehicle (UAV) system for use in disasters was investigated. The communication protocol was divided into two phases. In the first phase, a UAV relay (UR) harvested energy from a power beacon (PB). In the second phase, a base station (BS) transmitted the signal to the UR using non-orthogonal multiple access (NOMA); then, the UR used its harvested energy from the first phase to transfer the signal to two sensor clusters, i.e., low-priority and high-priority clusters, via the decode-and-forward (DF) technique. A closed-form expression for the throughput of the cluster heads of these clusters was derived to analyze the system performance. Monte Carlo simulations were employed to verify our approach.


Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5390 ◽  
Author(s):  
Le Van Nguyen ◽  
Ba Cao Nguyen ◽  
Xuan Nam Tran ◽  
Le The Dung

Full-duplex (FD) communication and spatial modulation (SM) are two promising techniques to achieve high spectral efficiency. Recent works in the literature have investigated the possibility of combining the FD mode with SM in the relay system to benefit their advantages. In this paper, we analyze the performance of the FD-SM decode-and-forward (DF) relay system and derive the closed-form expression for the symbol error probability (SEP). To tackle the residual self-interference (RSI) due to the FD mode at the relay, we propose a simple yet effective power allocation algorithm to compensate for the RSI impact and improve the system SEP performance. Both numerical and simulation results confirm the accuracy of the derived SEP expression and the efficacy of the proposed optimal power allocation.


2014 ◽  
Vol 668-669 ◽  
pp. 1386-1390
Author(s):  
Ren Kai Yu ◽  
Jun Xuan Wang ◽  
You Ming Sun ◽  
Yang Liu

For this paper, we analyze the achievable sum rate of zero-forcing (ZF) pre-coding and Maximum Ratio Transmission (MRT) pre-coding with Matrix Normalization in massive MIMO system with Imperfect CSIT. We compare the performances of these two pre-codings and find that ZF pre-coding outperforming MRT pre-coding in the high SNR region while MRT pre-coding outperforming ZF pre-coding in the low SNR region. Then we derive the threshold of the pre-coding selection and provide the procedure of pre-coding schemes selection.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012006
Author(s):  
Sammaiah Thurpati ◽  
Mahesh Mudavath ◽  
P. Muthuchidambaranathan

Abstract The performance of linear precoding schemes in downlink Massive MIMO systems is dealt with in this paper. Linear precoding schemes are incorporated with zero-forcing (ZF) and maximum ratio transmission (MRT), truncated polynomial expansion (TPE), regularized zero force (RZF) in Downlink massive MIMO systems. Massive MIMO downlink output is evaluated with linear precoding included. This paper expresses the performance of achievable sum-rate linear precoding with variable signal-to-noise (SNR) ratio and achievable sum rate and several transmitter-receiver antennas, such as imperfect CSI, less complex processing, and inter-user interference. The transmitter has complete state information on the channel. The information narrates how a signal propagates to the receiver from the transmitter and reflects, for example, the cumulative effect of distance scattering, fading, and power decay. They show that the performance analysis of two linear precoding techniques, i.e., Maximum Ratio Transmission (MRT) and Zero Forcing (ZF) for downlink mMIMO output network over a perfect chain. The results show the improved ZF precoding achievable sum rate compared to the MRT precoding schemes and compared the average achievable rate RZF and TPE.


2020 ◽  
Vol 10 (5) ◽  
pp. 1840 ◽  
Author(s):  
Zhihui Shang ◽  
Tao Zhang ◽  
Yueming Cai ◽  
Weiwei Yang ◽  
Hao Wu ◽  
...  

This paper studies the secure transmission in the dual-hop cognitive wiretap networks, where the secondary transmitter (Alice) aims to transmit confidential information to the secondary receiver (Bob) in the face of a multi-antenna relay (Relay), while the malicious eavesdropper (Eve) is used to eavesdrop the confidential information from Alice and Relay. To improve security, we design two transmission schemes, namely maximal-ratio combining/maximal-ratio transmission-selection combining (MRC/MRT-SC) with half-duplex (HD) receiver and maximal-ratio combining-zero forcing beamforming/maximal-ratio transmission-selection combining-zero forcing beamforming (MRC-ZFB/MRT-SC-ZFB) with full-duplex (FD) receiver. To evaluate the secrecy performance obtained from the proposed schemes comprehensively, the new closed-form and simple asymptotic expressions for the secrecy outage probability (SOP) and secrecy throughput (ST) of our considered networks with MRC-ZFB/MRT-SC-ZFB and MRC/MRT-SC schemes are derived, respectively. Thus, we explore the effect of various schemes on system secrecy performance in terms of SOP and ST. Analytical results and numerical simulations demonstrate that MRC-ZFB/MRT-SC-ZFB achieves better performance in the two proposed schemes. In particular, we show that the FD receiver plays a crucial role in designing the cognitive wiretap networks for protecting the legitimate link against attack from the malicious eavesdropping.


2021 ◽  
pp. 82-90
Author(s):  
Kehinde O. Odeyemi ◽  
◽  
Pius A. Owolawi

In this paper, the performance of an Energy Harvesting (EH) enabled full-duplex cooperative decode-and-forward (DF) relaying system is investigated over the Fisher-Snedecor F-fading channel. The system energy-constrained relay unit utilizes time-switching relay protocol for scavenging energy from the source signal and information transmission to the destination. To quantify the system performance, the exact analytical closed-form expression for the system outage probability is derived, and then used to obtain the analytical expression for the average throughput of delay-limited transmission mode. Moreover, the exact closed-form expression for the system Ergodic capacity is derived through which the average delay-tolerant throughput is determined for the system. In addition, the results demonstrate the impact of fading and shadowing severity on the system performance. It also is noticeable from the results that the performance of system is strongly affected by the loop back interference from the relay node. Finally, the accuracy of the derived analytical expressions is then validated through the Monte-Carlo simulation.


2020 ◽  
Author(s):  
Yebo Gu ◽  
Zhilu Wu ◽  
Zhendong Yin ◽  
Bowen Huang

Abstract The secure transmission problem of MIMO wireless system in fading channels is studied in this paper. We add a secrecy capacity optimization artificial noise(SCO-AN) to the transported signal for improving the security performance of the system. The closed-form expression of secrecy capacity's lower bound is obtained. Base on the closed-form expression of secrecy capacity's lower bound, We optimize the power allocation between the information-bearing signal and the SCO-AN. By calculating, the optimal ratio of power alloation betwenn the information-bearing signal and the SCO-AN is obtained. Through simulation, the results shows the secrecy capacity increases with more receiving antennas and less eavesdropping antennas.And more power should be allocated to the SCO-AN with the increase of the colluding eavedroppers.More over, we study the effect of channel estimation error on power allocation between information-bearing signal and SCO-AN and find that more power should be allocated to decrease eavesdroppers capacity if the channel estimation is not perfect.


Sign in / Sign up

Export Citation Format

Share Document