scholarly journals An Experimental Study on a Composite Bonding Structure for Steel Bridge Deck Pavements

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaoguang Zheng ◽  
Qi Ren ◽  
Huan Xiong ◽  
Xiaoming Song

As one of the major contributors to the early failures of steel bridge deck pavements, the bonding between steel and asphalt overlay has long been a troublesome issue. In this paper, a novel composite bonding structure was introduced consisting of epoxy resin micaceous iron oxide (EMIO) primer, solvent-free epoxy resin waterproof layer, and ethylene-vinyl acetate (EVA) hot melt pellets. A series of strength tests were performed to study its mechanical properties, including pull-off strength tests, dumbbell tensile tests, lap shear tests, direct tension tests, and 45°-inclined shear tests. The results suggested that the bonding structure exhibited fair bonding strength, tensile strength, and shear strength. Anisotropic behaviour was also observed at high temperatures. For epoxy resin waterproof layer, the loss of bonding strength, tensile strength, and shear strength at 60°C was 70%, 35%, and 39%, respectively. Subsequent pavement performance-oriented tests included five-point bending tests and accelerated wheel tracking tests. The impacts of bonding on fatigue resistance and rutting propagation were studied. It was found that the proposed bonding structure could provide a durable and well-bonded interface and was thus beneficial to prolong the fatigue lives of asphalt overlay. The choice of bonding materials was found irrelevant to the ultimate rutting depth of pavements. But the bonding combination of epoxy resin waterproof and EVA pellets could delay the early-stage rutting propagation.

2021 ◽  
Vol 7 ◽  
Author(s):  
Ying Xu ◽  
Xinpeng Lv ◽  
Chunfeng Ma ◽  
Fengming Liang ◽  
Jiafei Qi ◽  
...  

In this study, the effects of temperature, shear stress, and coating quantity of waterproof adhesive layer on the shear fatigue performance of a steel bridge deck pavement were investigated. Direct shear fatigue tests of a pavement comprising an epoxy resin waterproof adhesive layer with stone matrix asphalt were conducted at different temperatures, stress levels, and coating quantities. The results show that temperature and stress have significant effects on the shear fatigue life. With increasing temperature and stress, the shear fatigue life of the waterproof adhesive layer decreased gradually. Therefore, for steel bridge deck pavements under high temperatures and heavy loads, the use of asphalt waterproof adhesive layers or pavement layers should be evaluated carefully while limiting the traffic of heavily loaded vehicles. Shear failure occurs at the waterproof adhesive layer–pavement interface and not at the steel–waterproof adhesive layer interface. The shear strength of the epoxy resin waterproof adhesive layer is mainly provided by the bond strength between the waterproof adhesive and pavement mixture as well as the interlocking force between the cured epoxy resin and the bottom interface of uneven pavement mixture. The shear strength increases with the coating quantity of the waterproof adhesive layer; however, after reaching the maximum value, the shear strength becomes stable. In contrast, the interlaminar shear fatigue life increases continuously with the coating quantity of the waterproof adhesive layer. Appropriately increasing the coating quantity is beneficial for improving the resistance of the waterproof adhesive layer to interlaminar shear fatigue failure.


2020 ◽  
Vol 9 (1) ◽  
pp. 28
Author(s):  
Pasqualino Corigliano ◽  
Vincenzo Crupi ◽  
Serena Bertagna ◽  
Alberto Marinò

The aim of the present investigation was to assess the behaviour of strip-planked parts by comparing wooden specimens glued using two different bio-based adhesives with wooden specimens glued using a conventional epoxy resin generally used in boatbuilding. Experimental tests in accordance with UNI EN standards were performed in order to evaluate mechanical properties such as tensile strength, shear strength, elastic modulus and shear modulus. In addition, compression shear tests were performed in order to assess the shear modulus of the adhesives. The obtained results demonstrate that the mechanical properties of the investigated bio-based adhesives are comparable to, and sometimes better than, the conventional epoxy resin. Moreover, the experimental results give useful information for the design of wooden boats when the strip-planking process is used. Furthermore, a new procedure to assess the shear modulus of elasticity and shear strength, using the application of compression loadings, was proposed. The results were compared to standard lap-joint tests and showed even lower dispersion. Consequently, the testing procedure proposed by the authors is valid to assess shear properties under compression loading, and it can be applied in most laboratories since it involves the use of common testing devices.


2021 ◽  
Vol 291 ◽  
pp. 123366
Author(s):  
Yang Liu ◽  
Zhendong Qian ◽  
Xijun Shi ◽  
Yuheng Zhang ◽  
Haisheng Ren

2011 ◽  
Vol 488-489 ◽  
pp. 650-653
Author(s):  
Tihomir Štefić ◽  
Aleksandar Jurić ◽  
Pavao Marović

This paper presents the analysis of different types of shear strength of wood which can differ very much due to its structure and different orientations of applied load. These combinations of wood structure and load orientations lead to different modes of fracture. The main aim of the paper is to find a relation among all types of shear strength of the wood and to reduce the number of shear tests. Furthermore, different shear strengths will be analyzed both experimentally and numerically, i.e. experimentally by testing appropriate specimens and numerically with the help of the finite element structural analysis solver Robot AutoDesk. The testing specimens will be loaded parallel and perpendicular to the wood fibres and the radial and tangential planes will be analyzed. The paper will also investigate the relation to other strengths of wood (i.e. tensile strength parallel and perpendicular to the fibres) in order to simplify the testing procedure for shear strength determination.


Author(s):  
Jianlin Yuan ◽  
Junjie Yang

Along with the popularization and application of the steel bridge in China, due to the high modulus of asphalt concrete with good waterproof, anti-fatigue, anti-aging and good performance, asphalt concrete with high modulus was widely used in steel bridge deck pavement, the test and comparative study of high modulus asphalt concrete were carried out based on two types of common high modulus asphalt concrete which include the casting type asphalt concrete and epoxy resin modified asphalt concrete, aims to further explore the performance features of the steel bridge deck with high modulus asphalt concrete, and provide help on the application of this asphalt concrete on the steel bridge deck.


2007 ◽  
Vol 29-30 ◽  
pp. 319-322 ◽  
Author(s):  
M.S. Islam ◽  
K.L. Pickering

Industrial hemp fibre was treated with alkali and the influence of this treatment on interfacial shear strength (assessed using the single fibre pull-out test) and composite strength with an epoxy resin, over a range of epoxy resin to curing agent ratios, was investigated. Scanning electron microscopy was conducted to assess the fracture behaviour of the composite tensile test specimens. It was found that alkali treatment increased the interfacial shear strength and composite tensile strength, Young’s modulus and elongation at break. The highest tensile strength was obtained with an epoxy resin to curing agent ratio of 1:1 while the best Young’s modulus was achieved with a resin to curing agent ratio of 1:1.2.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hongchang Wang ◽  
Cheng Jin ◽  
Houyu Liu ◽  
Zhiqiang Xue

PurposeAs an important part of steel bridge deck pavement, if waterproof adhesive layer performance does not meet requirements, numerous kinds of bridge deck pavement distress may be encountered. To study the adhesive behavior of rubber asphalt waterproof adhesive layers in steel bridge gussasphalt pavement, the pull-off and direct-shear tests have been used in the study to mechanically simulate steel bridge deck pavement under vehicles loading.Design/methodology/approachSeveral potentially influential factors associated with the adhesive strength of rubber asphalt are investigated including temperature, spraying quantity and environmental conditions.FindingsResults indicate that rubber asphalt was associated with good performance with respect to its use as a waterproof adhesive layer; simulated performance was negatively correlated with increasing temperatures. A necessary spraying quantity of 0.4 Lm-2 is required for appropriate adhesive strength of the composite structure, with a decrease in adhesive strength noted when spraying quantity is significantly greater or less than this.Originality/valueThe current paper presents an examination of the adhesive performance of a rubber asphalt adhesive layer on steel bridge deck pouring construction, while additionally examining potentially influential factors and conditions via use of both pull-off and shear tests.


2013 ◽  
Vol 645 ◽  
pp. 15-18
Author(s):  
Du Ming Gong ◽  
Qi Cheng Liu ◽  
Ling Chen ◽  
Zi Jia Xiong

The engineering property of water-based epoxy resin mortar was investigated in this paper, the fluidity and pin performance are analyzed. Influence of water-based epoxy resin ratio on engineering property was discussed. As the results showed, the fluidity decreases with the increase of resin dosage(water-based epoxy resin on the percentage of total materials), and the best resin dosage is 9.7% around. The shear strength expression was nonlinear fitted, and the integration of shear strength and tensile strength was completed based on the experimental results to guide the engineering application.


MRS Advances ◽  
2020 ◽  
Vol 5 (23-24) ◽  
pp. 1225-1233
Author(s):  
Wilson Webo ◽  
Maina Maringa ◽  
Leonard Masu

ABSTRACTThe effect of the combined chemical treatment of sisal fibres through the subsequent processes of mercerisation (alkali-treatment), then silane treatment and eventually acid hydrolysis, on sisal fibre were investigated. The effect of the treated fibres on the tensile strength and stiffness, flexural strength and stiffness, compression strength and shear strength of their composites with epoxy resin were also studied. Scanning electron microscopy studies of the surfaces of the treated and untreated fibres showed that the chemical treatment processes enhanced the removal of surface extractives and therefore increased the roughness of the surfaces of the fibres in the range of 20 % - 70 %. This avails an increased reinforcement surface area for interlocking with matrix and is, therefore, expected to enhance adhesion of the two. The treated fibre reinforced composites were observed to have higher values of tensile strength and stiffness, flexural strength and stiffness, compression strength and shear strength than the un-treated fibre reinforced composites. These higher values were attributed to better interfacial bonding due to better mechanical interlocking between the treated fibres and epoxy resin arising from the increased roughness of the treated fibres.


Sign in / Sign up

Export Citation Format

Share Document