scholarly journals Synthesis, Molecular Docking, MEP and SAR Analysis, ADME-Tox Predictions, and Antimicrobial Evaluation of Novel Mono- and Tetra-Alkylated Pyrazole and Triazole Ligands

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Y. Kaddouri ◽  
B. Bouchal ◽  
F. Abrigach ◽  
M. El Kodadi ◽  
M. Bellaoui ◽  
...  

Newly synthesized compounds of N-alkylated heterocyclic compounds were prepared by condensation of amine with alcohol which undergoes a reaction of SN2. These newly synthesized derivatives were characterized by spectral analysis. The objective is to prepare new potent nontoxic antimicrobial agents which are easy to synthesize and could be scaled up in pharmaceutical industries. Thirteen new heterocyclic compounds containing a pyrazole moiety were synthesized with good yields (29.79 to 99.6%) and were characterized by FTIR, 1H NMR, 13C NMR, and CG-MS techniques. The compounds were divided into two series—monoalkylated compounds (1–11) and tetra-alkylated compounds (12 and 13)—and then evaluated for their in vitro antifungal and antibacterial activities against several fungal and bacterial strains. None of the monoalkylated compounds had antibacterial or antifungal activity. However, the two tetra-alkylated pyrazole ligands displayed strong antibacterial potential. Moreover, compound 12 was more potent against all tested bacterial strains than compound 13. Interestingly, compounds 12 and 13 acted as weak antifungal agents against Saccharomyces cerevisiae. ADME-Tox studies suggested that compounds 12 and 13 exhibit better toxicity profiles than the commercial antibiotic streptomycin. MEP studies suggested that compounds 12 and 13 have the same charge locations but differ in their values which are due to the condensed geometry of compound 13 that make it more polarizable than compound 12. Of particular interest, these different MEPs were evident in ligand protein docking, suggesting that compound 12 has better affinity with MGL enzyme than compound 13. All these findings suggested that these novel compounds represent promising antibacterial lead compounds.

2019 ◽  
Author(s):  
Chem Int

New copper complexes, [Cu(phen)2(Thy)]2Cl and [Cu(phen)2(Ad)]2Cl (phen = 1,10-phenantroline, Ad (Adenine, a purine nucleobase) and Thy (Thymine, a pyrimidine nucleobase)), were synthesized and characterized by atomic absorption spectroscopy (AAS), conductivity measurement, UV-visible and infrared (IR) techniques. The complexes were tested for their antimicrobial activity against two gram positive and two gram negative bacterial strains. The results of in vitro antimicrobial activities were compared with the commercially available antimicrobial agents (ciprofloxacin and chloramphenicol). This comparative study has demonstrated that [Cu(phen)2(Thy)]2Cl inhibited the growth of methicillin resistant Staphylococcus aureous (MRSA), Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumonia) better than chloramphenicol by 11.25%, 19.41% and 25.35%, respectively. It also showed better activities than ciprofloxacine on MRSA and K. pneumoniae by 2.50% and 12.13%, respectively. Similarly, [Cu(phen)2(Ad)]2Cl demonstrated better inhibitions than chloramphenicol against MRSA, E. coli and K. pneumoniae by 11.24%, 2.48% and 9.06%, respectively. Therefore, after in vivo cytotoxicity investigations, these complexes could be considered as potential antimicrobial agents.


2017 ◽  
Vol 82 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Satbir Mor ◽  
Rajni Mohil ◽  
Savita Nagoria ◽  
Ashwani Kumar

A series of sixteen 1-(4-arylthiazol-2-yl)-1?-(aryl/heteroaryl)-3,3?-dimethyl-[ 4,5?-bi-1H-pyrazol]-5-ols (7a?p) was synthesized starting from dehydroacetic acid (DHA, 1) via the stepwise formation of thiosemicarbazone (2), 3-(1-(2-(4-arylthiazol-2-yl)hydrazono)ethyl)-4-hydroxy-6-methyl-2H-pyran- -2-ones (4a?d) and 1-(1-(4-arylthiazol-2-yl)-5-hydroxy-3-methyl-1H-pyrazol- -4-yl)butane-1,3-diones (5a?d) in high yields. The in vitro antibacterial and antifungal activities of the synthesized bipyrazoles 7a?p were investigated against two Gram-positive bacterial strains, viz. Bacillus subtilis (MTCC 441) and Staphylococcus aureus (MTCC 7443), one Gram-negative bacterial strain, viz. Escherichia coli (MTCC 42), and two fungal strains, viz. Candida albicans (MTCC 183) and Aspergillus niger (MTCC 282). The compounds 7a and 7e were found to exhibit better inhibitory activity against A. niger than the reference fluconazole. Moreover, the antifungal activities of the title compounds were more prolific than their antibacterial activities. Furthermore, in order to study binding interactions, docking simulations of compounds 7a, 7m and 7o were performed into the active site of S. aureus 1,4-dihydroxy-2-naphthoyl- -CoA synthase. Keywords: bipyrazoles; antibacterial; antifungal; docking simulations.


2020 ◽  
Vol 11 ◽  
pp. 37-43
Author(s):  
Prof. Teodora P. Popova ◽  
Toshka Petrova ◽  
Ignat Ignatov ◽  
Stoil Karadzhov

The antimicrobial action of the dietary supplement Oxidal® was tested using the classic Bauer and Kirby agar-gel diffusion method. Clinical and reference strains of Staphylococcus aureus and Escherichia coli were used in the studies. The tested dietary supplement showed a well-pronounced inhibitory effect against the microbial strains commensurable with that of the broad-spectrum chemotherapeutic agent Enrofloxacin and showed even higher activity than the broad spectrum antibiotic Thiamphenicol. The proven inhibitory effect of the tested dietary supplement against the examined pathogenic bacteria is in accordance with the established clinical effectiveness standards for antimicrobial agents.


BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ahmed M. Senan ◽  
Binru Yin ◽  
Yaoyao Zhang ◽  
Mustapha M. Nasiru ◽  
Yong‐Mei Lyu ◽  
...  

AbstractWith the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe3+-cit.)/Na2S2O8 catalyst. Methyl (9Z,12Z)-octadecadienoate (ML) was selected as an example of vegetable oils hydroxylation to its hydroxy-conjugated derivatives (CHML) in the presence of a new complex of Fe(II)-species. Methyl 9,12-di-hydroxyoctadecanoate 1, methyl-9-hydroxyoctadecanoate 2 and methyl (10E,12E)-octadecanoate 3 mixtures is produced under optimized condition with oxygen balloon. The specific hydroxylation activity was lower in the case of using Na2S2O8 alone as a catalyst. A chemical reaction has shown the main process converted of plantoils hydroxylation and (+ 16 Da) of OH- attached at the methyl linoleate (ML-OH). HPLC and MALDI-ToF-mass spectrometry were employed for determining the obtained products. It was found that adding oxidizing agents (Na2S2O8) to Fe3+ in the MeCN mixture with H2O would generate the new complex of Fe(II)-species, which improves the C-H activation. Hence, the present study demonstrated a new functional method for better usage of vegetable oils.Producing conjugated hydroxy-fatty acids/esters with better antipathogenic properties. CHML used in food industry, It has a potential pathway to food safety and packaging process with good advantages, fundamental to microbial resistance. Lastly, our findings showed that biological monitoring of CHML-minimum inhibitory concentration (MIC) inhibited growth of various gram-positive and gram-negative bacteria in vitro study. The produced CHML profiles were comparable to the corresponding to previousstudies and showed improved the inhibition efficiency over the respective kanamycin derivatives.


2020 ◽  
Vol 18 (1) ◽  
pp. 764-777
Author(s):  
Sumaira Naz ◽  
Muhammad Zahoor ◽  
Muhammad Naveed Umar ◽  
Saad Alghamdi ◽  
Muhammad Umar Khayam Sahibzada ◽  
...  

AbstractThioureas and their derivatives are organosulfur compounds having applications in numerous fields such as organic synthesis and pharmaceutical industries. Symmetric thiourea derivatives were synthesized by the reaction of various anilines with CS2. The synthesized compounds were characterized using the UV-visible and nuclear magnetic resonance (NMR) spectroscopic techniques. The compounds were screened for in vitro inhibition of α-amylase, α-glucosidase, acetylcholinesterase (AChE), and butyrylcholinesterase (BuChE) enzymes and for their antibacterial and antioxidant potentials. These compounds were fed to Swiss male albino mice to evaluate their toxicological effects and potential to inhibit glucose-6-phosphatase (G6Pase) inhibition. The antibacterial studies revealed that compound 4 was more active against the selected bacterial strains. Compound 1 was more active against 2,2-diphenyl-1-picrylhydrazyl and 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radicals, AChE, BuChE, and α-glucosidase. Compound 2 was more potent against α-amylase and G6Pase. Toxicity studies showed that compound 4 is safe as it exerted no toxic effect on any of the hematological and biochemical parameters or on liver histology of the experimental animals at any studied dose rate. The synthesized compounds showed promising antibacterial and antioxidant potential and were very active (both in vitro and in vivo) against G6Pase and moderately active against the other selected enzymes used in this study.


2019 ◽  
Vol 31 (10) ◽  
pp. 2157-2164
Author(s):  
B. Prithivirajan ◽  
M. Jebastin Sonia Jas ◽  
G. Marimuthu

(Z)-1-(Benzo[d][1,3]dioxol-5-yl)-3-(4-(difluoromethoxy)-3-hydroxyphenyl)prop-2-en-1-one hydrazone derivatives pronounced in this manuscript represents a new collection of antibacterial agents in addition to the DNA gyrase inhibitors. Efforts had been made to synthesize those chalcone-hydrazone derivatives (4a-e) in good yields. The literature survey confirms that nano-ZnO as heterogeneous catalyst has obtained big interest because of its ecofriendly nature and has been explored as a effective catalyst for several organic ameliorations. Subsequently, induced by way of these observations and in continuation to our interest in organic synthesis with using nanocatalyst. in vitro Antibacterial activity has been evaluated towards Gram-positive and Gram-negative bacterial strains for all compounds. So one can discover the affinity to bacterial proteins docking have a look at have been carried out for 5 synthesized derivatives, antibiotic drug and co-crystallized ligands with special mechanism of action DNA gyrase B and methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) the usage of AutoDock 4.


2011 ◽  
Vol 8 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Priyanka Kamaria ◽  
N. Kawathekar ◽  
Prerna Chaturvedi

In order to develop new antimicrobial agents, a series of Schiff bases of indole-3-aldehyde were synthesized by microwave assisted synthesis by takingDMFas solvent and evaluated for their antimicrobial activity. All the synthesized compounds were characterized byIR,1HNMRand mass spectral analysis. All compounds were tested against five gram positive and five gram negative bacterial strains and one fungal strain. All compounds exhibited better activity against gram positive strains than against gram negative strains and the compounds were found more active againstS.aureusandB.subtilis.


2021 ◽  
Vol 03 (04) ◽  
pp. e164-e182
Author(s):  
Mpho Phehello Ngoepe ◽  
Hadley S. Clayton

AbstractMedicinal inorganic chemistry involving the utilization of metal-based compounds as therapeutics has become a field showing distinct promise. DNA and RNA are ideal drug targets for therapeutic intervention in the case of various diseases, such as cancer and microbial infection. Metals play a vital role in medicine, with at least 10 metals known to be essential for human life and a further 46 nonessential metals having been involved in drug therapies and diagnosis. These metal-based complexes interact with DNA in various ways, and are often delivered as prodrugs which undergo activation in vivo. Metal complexes cause DNA crosslinking, leading to the inhibition of DNA synthesis and repair. In this review, the various interactions of metal complexes with DNA nucleic acids, as well as the underlying mechanism of action, were highlighted. Furthermore, we also discussed various tools used to investigate the interaction between metal complexes and the DNA. The tools included in vitro techniques such as spectroscopy and electrophoresis, and in silico studies such as protein docking and density-functional theory that are highlighted for preclinical development.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Vineet Kumar Choudhary ◽  
Abhishek Kumar ◽  
Neeraj Sharma

AbstractThe new diorganotin(IV) complexes of composition [Me2Sn(C6H5OCH2CONHO)2](I) and [n-Bu2Sn(C6H5OCH2CONHO)2](II) have been synthesized by the reactions of Me2SnCl2andn-Bu2SnCl2with potassium phenoxyacetohydroxamate (PhOAHK=C6H5OCH2CONHOK) in 1:2 molar ratio in methanol and benzene solvent medium and characterized by elemental analyses and spectroscopic techniques (infrared,1H nuclear magnetic resonance and mass spectrometry). The [O,O coordination] through carbonyl and hydroxamic oxygen atoms and distorted octahedral geometry around the mononuclear tin has been inferred. The electrochemical behavior of complexes studied by the cyclic voltammetric technique has shown quasi-irreversible two-step reduction from tin (IV) to tin (II). Thermal behavior of complexes studied by the thermogravimetric technique in N2atmosphere has yielded SnO as the decomposition product. Thein vitroantimicrobial activity assays against various pathogenic Gram-negative bacteria, namely,Salmonella typhi,Escherichia coli; Gram-positiveBacillus cereusandStaphylococcus aureusand fungiAspergillus nigerandAlternaria alternataby the minimum inhibitory concentration method have shown their potential as promising antimicrobial agents compared to the respective standard chloramphenicol and nystatin drugs.


Sign in / Sign up

Export Citation Format

Share Document