scholarly journals Melatonin Alleviates Contrast-Induced Acute Kidney Injury by Activation of Sirt3

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Chunmei Zhang ◽  
Mengying Suo ◽  
Lingxin Liu ◽  
Yan Qi ◽  
Chen Zhang ◽  
...  

Oxidative stress and apoptosis play a vital role in the pathogenesis of contrast-induced acute kidney injury (CI-AKI). The purpose of our study was to investigate the protective effects and mechanisms of melatonin against CI-AKI in a CI-AKI mouse model and NRK-52E cells. We established the CI-AKI model in mice, and the animals were pretreated with melatonin (20 mg/kg). Our results demonstrated that melatonin treatment exerted a renoprotective effect by decreasing the level of serum creatinine (SCr) and blood urea nitrogen (BUN), lessening the histological changes of renal tubular injuries, and reducing the expression of neutrophil gelatinase-associated lipid (NGAL), a marker of kidney injury. We also found that pretreatment with melatonin remarkably increased the expression of Sirt3 and decreased the ac-SOD2 K68 level. Consequently, melatonin treatment significantly decreased the oxidative stress by reducing the Nox4, ROS, and malondialdehyde (MDA) content and by increasing the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity levels. The antiapoptotic effect of melatonin on CI-AKI was revealed by decreasing the ratio of Bax/Bcl2 and the cleaved caspase3 level and by reducing the number of apoptosis-positive tubular cells. In addition, melatonin treatment remarkably reduced the inflammatory cytokines of interleukin-1β (IL-1β), tumor necrosis factor α (TNFα), and transforming growth factor β (TGFβ) in vivo and in vitro. Sirt3 deletion and specific Sirt3 siRNA abolished the above renoprotective effects of melatonin in mice with iohexol-induced acute kidney injury and in NRK-52E cells. Thus, our results demonstrated that melatonin exhibited the renoprotective effects of antioxidative stress, antiapoptosis, and anti-inflammation by the activation of Sirt3 in the CI-AKI model in vivo and in vitro. Melatonin may be a potential drug to ameliorate CI-AKI in clinical practice.

2019 ◽  
Vol 10 (10) ◽  
Author(s):  
Dongdong Yuan ◽  
Xiaoyun Li ◽  
Chenfang Luo ◽  
Xianlong Li ◽  
Nan Cheng ◽  
...  

Abstract Postoperative acute kidney injury (AKI) is a severe complication after liver transplantation (LT). Its deterioration and magnification lead to the increase in mortality. Connexin43 (Cx43) mediates direct transmission of intracellular signals between neighboring cells, always considered to be the potent biological basis of organ damage deterioration and magnification. Thus, we explored the effects of Cx43 on AKI following LT and its related possible mechanism. In this study, alternations of Cx43 expression were observed in 82 patients, receiving the first-time orthotopic LT. We built autologous orthotopic liver transplantation (AOLT) models with Sprague–Dawley (SD) rats in vivo, and hypoxia-reoxygenation (H/R) or lipopolysaccharide (LPS) pretreatment models with kidney tubular epithelial cells (NRK-52E) in vitro, both of which were the most important independent risk factors of AKI following LT. Then, different methods were used to alter the function of Cx43 channels to determine its protective effects on AKI. The results indicated that patients with AKI suffering from longer time of tracheal intubation or intensive care unit stay, importantly, had significantly lower survival rate at postoperative 30 days and 3 years. In rat AOLT models, as Cx43 was inhibited with heptanol, postoperative AKI was attenuated significantly. In vitro experiments, downregulation of Cx43 with selective inhibitors, or siRNA protected against post-hypoxic NRK-52E cell injuries caused by H/R and/or LPS, while upregulation of Cx43 exacerbated the above-mentioned cell injuries. Of note, alternation of Cx43 function regulated the content of reactive oxygen species (ROS), which not only mediated oxidative stress and inflammation reactions effectively, but also regulated necroptosis. Therefore, we concluded that Cx43 inhibition protected against AKI following LT through attenuating ROS transmission between the neighboring cells. ROS alternation depressed oxidative stress and inflammation reaction, which ultimately reduced necroptosis. This might offer new insights for targeted intervention for organ protection in LT, or even in other major surgeries.


2012 ◽  
Vol 303 (10) ◽  
pp. F1443-F1453 ◽  
Author(s):  
Chung-Hsi Hsing ◽  
Chiou-Feng Lin ◽  
Edmund So ◽  
Ding-Ping Sun ◽  
Tai-Chi Chen ◽  
...  

Bone morphogenetic protein (BMP)-7 protects sepsis-induced acute kidney injury (AKI). Dexmedetomidine (DEX), an α2-adrenoceptor (α2-AR) agonist, has anti-inflammatory effects. We investigated the protective effects of DEX on sepsis-induced AKI and the expression of BMP-7 and histone deacetylases (HDACs). In vitro , the effects of DEX or trichostatin A (TSA, an HDAC inhibitor) on TNF-α, monocyte chemotactic protein (MCP-1), BMP-7, and HDAC mRNA expression in LPS-stimulated rat renal tubular epithelial NRK52E cells, was determined using real-time PCR. In vivo, mice were intraperitoneally injected with DEX (25 μg/kg) or saline immediately and 12 h after cecal ligation and puncture (CLP) surgery. Twenty-four hours after CLP, we examined kidney injury and renal TNF-α, MCP-1, BMP-7, and HDAC expression. Survival was monitored for 120 h. LPS increased HDAC2, HDAC5, TNF-α, and MCP-1 expression, but decreased BMP-7 expression in NRK52E cells. DEX treatment decreased the HDAC2, HDAC5, TNF-α, and MCP-1 expression, but increased BMP-7 and acetyl histone H3 expression, whose effects were blocked by yohimbine, an α2-AR antagonist. With DEX treatment, the LPS-induced TNF-α expression and cell death were attenuated in scRNAi-NRK52E but not BMP-7 RNAi-NRK52E cells. In CLP mice, DEX treatment increased survival and attenuated AKI. The expression of HDAC2, HDAC5, TNF-α, and MCP-1 mRNA in the kidneys of CLP mice was increased, but BMP-7 was decreased. However, DEX treatment reduced those changes. DEX reduces sepsis-induced AKI by decreasing TNF-α and MCP-1 and increasing BMP-7, which is associated with decreasing HDAC2 and HDAC5, as well as increasing acetyl histone H3.


2021 ◽  
Author(s):  
Weifeng Li ◽  
Qiuxia Huang ◽  
Jinjin Yu ◽  
Jiabao Yu ◽  
Yajie Yang ◽  
...  

Abstract Schisandrin (Sch) is a main bioactive component of Schisandra sphenanthera Rehd.et Wils. It has been reported that Sch could regulate inflammatory disease. This study evaluated the anti-inflammatory and anti-oxidant effects effect of Sch on lipopolysaccharide (LPS)-induced macrophages activation and acute kidney injury mice. Male Kunming mice were intraperitoneally injected with LPS (15 mg/kg) after administration of Sch (12.5, 25, 50 mg/kg) seven days for developing acute kidney injury vivo model. RAW264.7 macrophages were pretreatment Sch (10, 20, 40 µM) and administrated LPS (1 µg/ml) to create an in vitro injury model. ELISA results found that Sch administration reduced the production of inflammatory factors induced by LPS in kidney tissues and RAW264.7 macrophages. It has been observed that Sch alleviated oxidative stress by reducing the levels of reactive oxygen species, myeloperoxidase and malondialdehyde, and increasing the activity of superoxide dismutase and glutathione peroxidase. Hematoxylin-eosin staining data suggested that Sch administration significantly reduced inflammatory cell infiltration and the kidney tissue damage induced by LPS. The blood urea nitrogen and creatinine levels were also reduced by Sch treatment. In addition, Western blot and immunohistochemical analysis showed that Sch up-regulated the expression of Nrf2 and HO-1, and decreased the expression of p-p38, p-JNK, p-ERK1/2, p-IκBα, p-NF-κBp65 and TLR4. The current research showed that Sch reduced LPS-induced acute kidney injury by inhibiting inflammation and oxidative stress, and provided insights into potential ways to treat AKI.


2017 ◽  
Vol 43 (5) ◽  
pp. 2143-2154 ◽  
Author(s):  
Xiaoling Chen ◽  
Jian Sun ◽  
Hailun Li ◽  
Hongwu Wang ◽  
Yongtao Lin ◽  
...  

Background/Aims: Rhabdomyolysis (RM) is a potentially life-threatening condition that results from the breakdown of muscle and consequent release of toxic compounds into circulation. The most common and severe complication of RM is acute kidney injury (AKI). This study aimed to evaluate the efficacy and mechanisms of action of curcumin-loaded nanoparticles (Cur-NP) for treatment of RM-induced AKI. Methods: Curcumin-NP was synthesized using the nanocarrier distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-PEG) to achieve a prolonged and constant drug release profile compared with the curcumin-free group. The anti-AKI effects of Curcumin-NP were examined both in vitro (myoglobin-treated renal tubular epithelial HK-2 cells) and in vivo (glycerol-induced AKI model). Results: Our results indicated that Curcumin-NP reversed oxidative stress, growth inhibition and cell apoptosis accompanied with down-regulation of apoptotic markers Caspase-3 and GRP-78 in vitro. In vivo studies revealed enhanced AKI treatment efficacy with Curcumin-NP as characterized by reduced serum creatine phosphokinase (CPK), creatinine (Cr) and urea and less severe histological damage in renal tubules. In addition, kidney tissues from Curcumin-NP-treated AKI rats exhibited reduced oxidative stress, apoptosis, and cleaved Capase-3 and GRP-78 expression. Conclusion: Our results suggest that nanoparticle-loaded curcumin enhances treatment efficacy for RM-induced AKI both in vitro and in vivo.


2021 ◽  
pp. 1-19
Author(s):  
Qin Yang ◽  
Li Gao ◽  
Xiao-wei Hu ◽  
Jia-nan Wang ◽  
Yao Zhang ◽  
...  

<b><i>Background:</i></b> Transforming growth factor-β (TGF-β)/Smad signaling is the central mediator in renal fibrosis, yet its functional role in acute kidney injury (AKI) is not fully understood. Recent evidence showed that TGF-β/Smad3 may be involved in the pathogenesis of AKI, but its functional role and mechanism of action in cisplatin-induced AKI are unclear. <b><i>Objectives:</i></b> Demonstrating that Smad3 may play certain roles in cisplatin nephropathy due to its potential effect on programmed cell death and inflammation. <b><i>Methods:</i></b> Here, we established a cisplatin-induced AKI mouse model with Smad3 knockout mice and created stable in vitro models with Smad3 knockdown tubular epithelial cells. In addition, we tested the potential of Smad3-targeted therapy using 2 in vivo protocols – lentivirus-mediated Smad3 silencing in vivo and use of naringenin, a monomer used in traditional Chinese medicine and a natural inhibitor of Smad3. <b><i>Results:</i></b> Disruption of Smad3 attenuated cisplatin-induced kidney injury, inflammation, and NADPH oxidase 4-dependent oxidative stress. We found that Smad3-targeted therapy protected against loss of renal function and alleviated apoptosis, RIPK-mediated necroptosis, renal inflammation, and oxidative stress in cisplatin nephropathy. <b><i>Conclusions:</i></b> These findings show that Smad3 promotes cisplatin-induced AKI and Smad3-targeted therapy protects against this pathological process. These findings have substantial clinical relevance, as they suggest a therapeutic target for AKI.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lucy J. Newbury ◽  
Kate Simpson ◽  
Usman Khalid ◽  
Imogen John ◽  
Lluís Bailach de Rivera ◽  
...  

AbstractAcute kidney injury (AKI) is a global clinical problem characterised by a sudden decline in renal function and mortality as high as 60%. Current AKI biomarkers have limited ability to classify disease progression and identify underlying pathological mechanisms. Here we hypothesised that alterations in urinary microRNA profiles could predict AKI recovery/nonrecovery after 90 days, and that injury-specific changes would signify microRNA mediators of AKI pathology. Comparison of urinary microRNA profiles from AKI patients with controls detected significant injury-specific increases in miR-21, miR-126 and miR-141 (p < 0.05) and decreases in miR-192 (p < 0.001) and miR-204 (p < 0.05). Expression of miR-141 increased in renal proximal tubular epithelial cells (PTECs) under oxidative stress in vitro and unilateral ischaemic reperfusion injury in vivo. Forced miR-141 expression in the presence of H2O2 increased PTEC death and decreased cell viability. Of nine messenger RNA targets with two or more miR-141 3’-untranslated region binding sites, we confirmed protein tyrosine phosphatase receptor type G (PTPRG) as a direct miR-141 target in PTECs. PTPRG-specific siRNA knockdown under oxidative stress increased PTEC death and decreased cell viability. In conclusion, we detected significant alterations in five urinary microRNAs following AKI, and identified proximal tubular cell PTPRG as a putative novel therapeutic target.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yuhong Chen ◽  
Sheng Jin ◽  
Xu Teng ◽  
Zhenjie Hu ◽  
Zhihong Zhang ◽  
...  

In order to investigate the protective mechanism of hydrogen sulfide (H2S) in sepsis-associated acute kidney injury (SA-AKI), ten AKI patients and ten healthy controls were enrolled. In AKI patients, levels of creatinine (Cre), urea nitrogen (BUN), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and myeloperoxidase (MPO) activity as well as concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were significantly increased compared with those of controls. However, plasma level of H2S decreased and was linearly correlated with levels of Cre and BUN. After that, an AKI mouse model by intraperitoneal lipopolysaccharide (LPS) injection was constructed for in vivo study. In AKI mice, H2S levels decreased with the decline of 3-MST activity and expression; similar changes were observed in other indicators mentioned above. However, the protein expressions of TLR4, NLRP3, and caspase-1 in mice kidney tissues were significantly increased 6 h after LPS injection. NaHS could improve renal function and kidney histopathological changes, attenuate LPS-induced inflammation and oxidative stress, and inhibit expressions of TLR4, NLRP3, and caspase-1. Our study demonstrated that endogenous H2S is involved in the pathogenesis of SA-AKI, and exogenous H2S exerts protective effects against LPS-induced AKI by inhibiting inflammation and oxidative stress via the TLR4/NLRP3 signaling pathway.


2011 ◽  
Vol 301 (1) ◽  
pp. F162-F170 ◽  
Author(s):  
Qingqing Wei ◽  
William D. Hill ◽  
Yunchao Su ◽  
Shuang Huang ◽  
Zheng Dong

Granulocyte colony-stimulating factor (G-CSF) is renoprotective during acute kidney injury (AKI) induced by ischemia and cisplatin nephrotoxicity; however, the underlying mechanism is not entirely clear. Rhabdomyolysis is another important clinical cause of AKI, due to the release of nephrotoxins (e.g., heme) from disrupted muscles. The current study has determined the effects of G-CSF on rhabdomyolysis-associated AKI using in vivo and in vitro models. In C57BL/6 mice, intramuscular injection of glycerol induced AKI, which was partially prevented by G-CSF pretreatment. Consistently, glycerol-induced renal tissue damage was ameliorated by G-CSF. In addition, animal survival following the glycerol injection was improved from ∼30 to ∼70% by G-CSF. In cultured renal tubular cells, hemin-induced apoptosis was also suppressed by G-CSF. Interestingly, G-CSF induced heme oxygenase-1 (HO-1, a critical enzyme for heme/hemin degradation and detoxification) in both cultured tubular cells and mouse kidneys. Blockade of HO-1 with protoporphyrin IX zinc(II) (ZnPP) could largely diminish the protective effects of G-CSF. Together, these results demonstrated the renoprotective effects of G-CSF in rhabdomyolysis-associated AKI. Notably, G-CSF may directly protect against tubular cell injury under the disease condition by inducing HO-1.


2021 ◽  
Vol 8 ◽  
Author(s):  
Weitao Zhang ◽  
Ruochen Qi ◽  
Tingting Li ◽  
Xuepeng Zhang ◽  
Yi Shi ◽  
...  

Sepsis-associated acute kidney injury (SA-AKI) is a life-threatening syndrome. Lipopolysaccharide (LPS) is a widely used inducer for modeling SA-AKI both in vivo and in vitro. However, due to the innate complexity of the kidney architecture, the mechanisms underlying the pathogenesis of SA-AKI, as well as those involved in LPS-induced kidney injury remain to be clarified. Kidney organoids derived from human pluripotent stem cells (hPSCs) act as a model of multiple types of kidney cells in vitro and eliminate potential confounders in vivo. In the current study, we established LPS-induced kidney injury models both in vivo and in human kidney organoids. Kidney function, pathological changes, and markers of oxidative stress were evaluated with/without the presence of methylprednisolone (MP) treatment both in vivo and in vitro. The extent of LPS-induced oxidative stress and apoptosis in kidney organoids was further investigated in vitro. LPS-induced acute kidney injury in mice, together with pathological changes and increased oxidative stress, as well as enhanced apoptosis in kidney cells were evaluated. These phenomena were ameliorated by MP treatment. Experiments in kidney organoids showed that the LPS-induced apoptotic effects occurred mainly in podocytes and proximal tubular cells. Our experiments demonstrated the efficacy of using kidney organoids as a solid platform to study LPS-induced kidney injury. LPS induced oxidative stress as well as apoptosis in kidney cells independently of changes in perfusion or immune cell infiltration. MP treatment partially alleviated LPS-induced injury by reducing kidney cell oxidative stress and apoptosis.


RSC Advances ◽  
2016 ◽  
Vol 6 (112) ◽  
pp. 110874-110883 ◽  
Author(s):  
Di Huang ◽  
Changyuan Wang ◽  
Qiang Meng ◽  
Zhihao Liu ◽  
Xiaokui Huo ◽  
...  

Acute kidney injury (AKI) is a well-known organ injury frequently observed after rhabdomyolysis (RM).


Sign in / Sign up

Export Citation Format

Share Document