scholarly journals Axial Performance of Steel Fiber-Reinforced Rubberized Concrete-Filled Circular Tubular Columns

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yu Deng ◽  
Jiong-Feng Liang ◽  
Wei Li

In order to study the axial performance of steel fiber-reinforced rubberized concrete-filled circular steel tubular columns, a total of 11 steel fiber-reinforced rubberized concrete-filled circular tubular columns are subjected to axial compression tests, considering the main parameters are rubber substitution rate, rubber particle size, steel fiber content, and concrete strength. The test results show that the use of rubber will reduce the bearing capacity of the columns but can increase the ductility of the columns. The smaller the rubber particles, the greater the reduction in the bearing capacity. The incorporation of steel fibers can increase the compressive strength of concrete, thereby improving the axial performance of the columns. The strength of concrete has the greatest influence on the columns, and the bearing capacity increases approximately linearly with the increase of concrete strength.

2010 ◽  
Vol 163-167 ◽  
pp. 1586-1591
Author(s):  
Jie Lei ◽  
Dan Ying Gao ◽  
Hua Fan

Based on the experiments of 10 model specimens of fiber reinforced high strength concrete three-pile caps with the dimension of 831mm×831mm×831mm, the mechanical behavior and the important factors on the cracking load and ultimate bearing capacity of fiber reinforced high strength concrete three-pile caps were researched. The study indicates that with increasing of concrete strength, the volume fraction of steel fiber, the effective thickness and reinforcement ratio of pile cap, the bearing capacity of three-pile caps improves largely. At the same time the type of steel fiber and steel ratio have remarkable effects on the bearing capacity. The results are valuable for establishing bearing capacity calculation formulas of fiber reinforced high strength concrete three-pile caps and improving “the Technical Specification for fiber Reinforced Concrete Structure.”


2021 ◽  
pp. 136943322098165
Author(s):  
Hossein Saberi ◽  
Farzad Hatami ◽  
Alireza Rahai

In this study, the co-effects of steel fibers and FRP confinement on the concrete behavior under the axial compression load are investigated. Thus, the experimental tests were conducted on 18 steel fiber-reinforced concrete (SFRC) specimens confined by FRP. Moreover, 24 existing experimental test results of FRP-confined specimens tested under axial compression are gathered to compile a reliable database for developing a mathematical model. In the conducted experimental tests, the concrete strength was varied as 26 MPa and 32.5 MPa and the steel fiber content was varied as 0.0%, 1.5%, and 3%. The specimens were confined with one and two layers of glass fiber reinforced polymer (GFRP) sheet. The experimental test results show that simultaneously using the steel fibers and FRP confinement in concrete not only significantly increases the peak strength and ultimate strain of concrete but also solves the issue of sudden failure in the FRP-confined concrete. The simulations confirm that the results of the proposed model are in good agreement with those of experimental tests.


2013 ◽  
Vol 790 ◽  
pp. 181-184
Author(s):  
Hai Lun Tong ◽  
Tian Hong Wang ◽  
Jian Qi Lu ◽  
Xin Tang Wang

The post-fire axial compressive behavior of a set of steel fiber reinforced ceramsite concrete filled steel tubular short columns (noted as SFCC-SSC) was experimentally studied. Effect of the maximum value of fire response temperatures of the specimens and some parameters on the axial compression performance of the specimens was especially discussed. The results show that the surface of the steel tubes after fire presented dark red for 700°Cof furnace temperature and orange red for 900°C, and there was no obvious descending segment in post-fire load-displacement curves of the most specimens subjected to fire load. It was concluded that the axial bearing capacity of the specimens aftersuffering the furnace temperature of 900°C is much less than that of the specimens not subjected to fire load, and the volume of steel fiber of 0.5% of has the greatest effect on post-fire bearing capacity of specimens of SFCC-SSC.


2014 ◽  
Vol 919-921 ◽  
pp. 1794-1800
Author(s):  
Xin Zhi Zheng ◽  
Xin Hua Zheng

Abstract: 7 square steel tubular columns were tested to discuss the ultimate axial bearing capacity, ductility performance and the steel consumption under stiffened by steel belts and binding bars of different cross-sections. Test results indicate that only by increasing fewer amounts of steel usage, stiffened square CFST columns with binding bars can not only improve the overall effects of restraint and alleviate regional local buckling between the binding bars, but also improve the bearing capacity of concrete filled square steel tubular columns. The utility benefits and the economical benefit is considerable, deserving extensive use.


2018 ◽  
Vol 22 (2) ◽  
pp. 427-443 ◽  
Author(s):  
Jiepeng Liu ◽  
Hua Song ◽  
Yuanlong Yang

A total of 11 L-shaped multi-cell concrete-filled steel tubular stub columns were fabricated and researched in axial compression test. The key factors of width-to-thickness ratio D/ t of steel plates in column limb and prism compressive strength of concrete fck were investigated to obtain influence on failure mode, bearing capacity, and ductility of the specimens. The test results show that the constraint effect for concrete provided by multi-cell steel tube cannot be ignored. The ductility decreases with the increase of width-to-thickness ratio D/ t of steel plates in column limb. The bearing capacity increases and the ductility decreases with the increase in prism compressive strength of concrete fck. A finite element program to calculate concentric load–displacement curves of L-shaped multi-cell concrete-filled steel tubular stub columns was proposed and verified by the test results. A parametric analysis with the finite element program was carried out to study the influence of the steel ratio α, steel yield strength fy, prism compressive strength of concrete fck, and width-to-thickness ratio D/ t of steel plates in column limb on the stiffness, bearing capacity and ductility. Furthermore, the design method of bearing capacity was determined based on mainstream concrete-filled steel tubular codes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qiao-Huan Wang ◽  
Jiong-Feng Liang ◽  
Chun-Feng He ◽  
Wei Li

This paper attempts to explore the effects of recycled coarse aggregate content, steel fiber content, and concrete strength on the axial compressive behavior of steel fiber-reinforced recycled coarse aggregate (RCA) concrete-filled circular steel stub columns. A total of 14 short columns are tested. The results show that using RCA in concrete will reduce the bearing capacity of short columns, but the increase in steel fiber content and concrete strength can eliminate this shortcoming. Not only that, the concrete strength has a great influence on the ductility and stiffness of the specimen.


2005 ◽  
Vol 32 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
Ashraf M Ghaly ◽  
James D Cahill IV

Waste rubber tires that cannot be processed for useful applications are numbered in the millions around the world. The build up of old rubber tires in landfills is commonly considered a major threat to the environment, and it is unquestionably a burden on landfill space. This research project was an investigation into the possibility of using fine rubber particles in concrete mixtures. The experimental testing program was designed to study the effect of the addition of crumb rubber, as replacement of a portion of fine aggregates (sand), on the strength of concrete. Rubber was added to concrete in quantities of 5%, 10%, and 15% by volume of the mixture. Three different water/cement ratios were used: 0.47, 0.54, and 0.61. A total of 180 concrete cubes were made. The cubes were tested in compression at 1, 7, 14, 21, and 28 d with the load continuously and automatically measured until failure. The load values were used to calculate compressive stress as related to different rubber contents and water/cement ratios. Compression test results were used to develop several plots relating rubber content and water/cement ratio to compressive stress of concrete. Test results gathered in this research project indicated that the addition of crumb rubber to concrete results in a reduced strength as compared with that of conventional concrete. Based on the experimental results, correlations have been developed to estimate the reduction in concrete strength as a function of the rubber content in the mix.Key words: compressive strength, concrete, crumb rubber, rubberized concrete.


Sign in / Sign up

Export Citation Format

Share Document