scholarly journals Metabonomic Study on the Plasma of High-Fat Diet-Induced Dyslipidemia Rats Treated with Ge Gen Qin Lian Decoction by Ultrahigh-Performance Liquid Chromatography-Mass Spectrometry

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ziwei Xu ◽  
Yixuan Sheng ◽  
Guowei Zeng ◽  
Zhijun Zeng ◽  
Bingtao Li ◽  
...  

Gegen Qinlian decoction (GGQLD) has a definite effect on T2DM in clinic, and it has the effect of lowering blood sugar, improving insulin resistance, and improving the blood lipid level of rats with dyslipidemia, but the intervention mechanism of GGQLD on dyslipidemia has not been clarified. The changes in endogenous metabolites in the plasma of high-fat diet-induced dyslipidemia rats treated with Ge Gen Qin Lian Decoction (GGQLD) were studied to elucidate the therapeutic effects and mechanism of action of GGQLD in dyslipidemia. Based on ultrahigh-performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), the metabolic profiles of rat serum samples were collected. The rat model of dyslipidemia was induced by a 60% fat-fed high-fat diet. After feeding the rats with a high-fat diet for 4 weeks, dyslipidemia appeared. After 5 weeks of GGQLD (14.85 g kg−1) administration, the metabonomics of rats’ plasma samples in the normal group, model group, and administration group were analyzed. Mass profiler professional (MPP), SIMCA-P 14.1, and Graphpad prism 6.0 software were used combined with METLIN biological database and human metabolite database HMDB to screen and identify endogenous biomarkers. Metaboanalyst 4.0 software was used by combining with HMDB and KEGG databases; the enrichment and metabolic pathway of biomarkers were analyzed to explore the metabolic mechanism of dyslipidemia rats induced by high-fat diet and the intervention mechanism of Gegen Qinlian decoction. After 5 weeks of administration of GGQLD, the levels of serum TC and TG were significantly decreased ( P < 0.05 , P < 0.01 ), while HDL-C and LDL-C were not significantly affected. After administration, the food intake of rats in the administration group decreased gradually, and the change trend of body weight gradually slowed down. The metabonomics of rat plasma samples results showed that 23 potential biomarkers including α-linolenic acid, arachidonic acid, and lysophosphatidylcholine were significantly changed in positive ion mode. Studies have shown that GGQLD has a significant lipid-lowering effect on dyslipidemia rats induced by a high-fat diet, and its preventive mechanism is related to tryptophan metabolism, fatty acid biosynthesis, α-linolenic acid metabolism, arachidonic acid, and glycerophosphatidyl metabolism pathway.

2020 ◽  
Author(s):  
Ziwei Xu ◽  
Yixuan Sheng ◽  
Guowei Zeng ◽  
Zhijun Zeng ◽  
Bingtao Li ◽  
...  

Abstract Background: Gegen Qinlian decoction(GGQLD) has a definite effect on T2DM in clinic, and it has the effect of lowering blood sugar, improving insulin resistance, and improve the blood lipid level of rats with dyslipidemia, but the intervention mechanism of GGQLD on dyslipidemia has not been clarified. Methods: Based on ultra high performance liquid chromatography coupled with quadrupole-time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS), the metabolic profiles of rat serum samples were collected. The rat model of dyslipidemia was induced by 60% fat-fed high-fat diet. After feeding the rats with high-fat diet for 4 weeks, the dyslipidemia appeared. After 5 weeks of GGQLD(14.85g•kg-1) administration, the metabonomics of rats plasma samples in normal group, model group and administration group were analyzed. Mass profiler professional (MPP), SIMCA-P 14.1 and Graphpad prism 6.0 software were used combined with METLIN biological database and human metabolite database HMDB to screen and identify endogenous biomarkers. Metaboanalyst 4.0 software was used by combining with HMDB and KEGG databases, the enrichment and metabolic pathway of biomarkers were analyzed to explore the metabolic mechanism of dyslipidemia rats induced by high-fat diet and the intervention mechanism of Gegen Qinlian decoction.Results: After 5 weeks of administration of GGQLD, the levels of serum TC and TG were significantly decreased (P < 0.05, P < 0.01), while HDL-C and LDL-C were not significantly affected. After administration, the food intake of rats in administration group decreased gradually, and the change trend of body weight gradually slowed down. The metabonomics of rat plasma samples results showed that 23 potential biomarkers including α - linolenic acid, arachidonic acid and lysophosphatidylcholine were significantly changed in positive ion mode.Conclusion: Studies have shown that GGQLD has significant lipid-lowering effect on dyslipidemia rats induced by high-fat diet, and its preventive mechanism is related to tryptophan metabolism, fatty acid biosynthesis, α - linolenic acid metabolism, arachidonic acid, glycerophosphatidyl metabolism pathway.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Gwang-Ju Jang ◽  
Mi Jeong Sung ◽  
Haeng Jeon Hur ◽  
Miyoung Yoo ◽  
Jung Hoon Choi ◽  
...  

Hyperlipidemia is a risk factor for atherosclerotic cardiovascular disease and is a major public health concern. Allium hookeri (AH) is an Allium species containing high levels of bioactive organosulfur compounds such as methiin and cycloalliin. AH exerts hypolipidemic effects in animals fed a high-fat diet. However, there exists little information on the mechanisms underlying these effects. To address this issue, we used a metabolomic approach based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry to identify factors mediating the lipid-lowering effects of AH. Principal component and partial least-squares discriminant analyses of serum metabolome profiles revealed 25 metabolites as potential biomarkers for the effects of AH on lipid levels. These compounds were predominantly phospholipids, including phosphatidylcholines (PCs), lysoPCs, and lysophosphatidylethanolamines. Glycerophospholipid metabolism was identified as a significantly enriched pathway. These results provide mechanistic insight into the antihyperlipidemic effects of AH and evidence for its efficacy as a therapeutic agent.


Endocrinology ◽  
2015 ◽  
Vol 156 (6) ◽  
pp. 2006-2018 ◽  
Author(s):  
Baoping Jiang ◽  
Liang Le ◽  
Wenting Wan ◽  
Wei Zhai ◽  
Keping Hu ◽  
...  

AbstractAn infusion of Coreopsis tinctoria (CT) flowering tops is traditionally used in Portugal to control hyperglycemia; however, the effects of CT protection against high-fat diet (HFD)-induced hepatic insulin resistance have not been systematically studied and the precise mechanism of action is not clear. The metabolomic profiles of insulin-resistant rats fed a HFD and a CT-supplemented diet (HFD supplemented with CT drinking) for 8 weeks were investigated. Serum samples for clinical biochemistry and liver samples for histopathology and liquid chromatography-mass spectrometry-based metabolomic research were collected. Western blot and quantitative real-time PCR analyses were further used to measure the expression of several relevant enzymes together with perturbed metabolic pathways. Using analysis software, the CT treatment was found to significantly ameliorate the disturbance in 10 metabolic pathways. Combined metabolomic, Western blot, and quantitative real-time PCR analyses revealed that CT treatment significantly improved the glucose homeostasis by, on the one hand, through inhibiting the expression of gluconeogenic pathway key proteins glucose-6-phosphatase and phosphoenolpyruvate carboxykinase and, on the other hand, via regulating the mRNA or protein levels of the Krebs cycle critical enzymes (citrate synthase, succinate dehydrogenase complex, subunit A, flavoprotein, and dihydrolipoamide S-succinyltransferase). These results provide metabolic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and that the supplementation with CT improves insulin resistance at a global scale. Liquid chromatography-mass spectrometry-based metabolomics approaches are helpful to further understand diabetes-related mechanisms.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ruijuan Chen ◽  
Yi Zeng ◽  
Wenbiao Xiao ◽  
Le Zhang ◽  
Yi Shu

Diabetes in the elderly increases cognitive impairment, but the underlying mechanisms are still far from fully understood. A non-targeted metabolomics approach based on liquid chromatography-mass spectrometry (LC-MS) was performed to screen out the serum biomarkers of diabetic mild cognitive impairment (DMMCI) in rats. Total 48 SD rats were divided into three groups, Normal control (NC) group, high-fat diet (HFD) fed group and type 2 diabetes mellitus (T2DM) group. The T2DM rat model was induced by intraperitoneal administration of streptozotocin (STZ, 35 mg/kg) after 6 weeks of high-fat diet (HFD) feeding. Then each group was further divided into 4-week and 8-week subgroups, which were calculated from the time point of T2DM rat model establishment. The novel object recognition test (NORT) and the Morris water maze (MWM) method were used to evaluate the cognitive deficits in all groups. Compared to the NC-8w and HFD-8w groups, both NOR and MWM tests indicated significant cognitive dysfunction in the T2DM-8w group, which could be used as an animal model of DMMCI. Serum was ultimately collected from the inferior vena cava after laparotomy. Metabolic profiling analysis was conducted using ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) technology. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to verify the stability of the model. According to variable importance in the project (VIP &gt; 1) and the p-value of t-test (P &lt; 0.05) obtained by the OPLS-DA model, the metabolites with significant differences were screened out as potential biomarkers. In total, we identified 94 differentially expressed (44 up-regulated and 50 down-regulated) endogenous metabolites. The 10 top up-regulated and 10 top down-regulated potential biomarkers were screened according to the FDR significance. These biomarkers by pathway topology analysis were primarily involved in the metabolism of sphingolipid (SP) metabolism, tryptophan (Trp) metabolism, Glycerophospholipid (GP) metabolism, etc. Besides, SP metabolism, Trp metabolism and GP metabolism mainly belonging to the lipid metabolism showed marked perturbations over DMMCI and may contribute to the development of disease. Taken collectively, our results revealed that T2DM could cause cognitive impairment by affecting a variety of metabolic pathways especially lipid metabolism. Besides, serum PE, PC, L-Trp, and S1P may be used as the most critical biomarkers for the early diagnosis of DMMCI.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Jing-jing Li ◽  
Jie Yang ◽  
Wei-xi Cui ◽  
Xiao-qing Chen ◽  
Gang-ling Chen ◽  
...  

Nonalcoholic fatty liver disease (NAFLD), the most common form of chronic liver disease, is increased worldwide in parallel with the obesity epidemic. Our previous studies have showed that the extract ofI. hainanensis(EIH) can prevent NAFLD in rat fed with high-fat diet. In this work, we aimed to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. NAFLD model was induced in male Sprague-Dawley rats by high-fat diet. The NAFLD rats were administered EIH orally (250 mg/kg) for two weeks. After the experimental period, samples of 24 h urine were collected and analyzed by ultraperformance liquid chromatography/quadrupole time of flight mass spectrometry (UPLC-Q-TOF). Orthogonal partial least squares analysis (OPLSs) models were built to find biomarkers of NAFLD and investigate the therapeutic effects of EIH. 22 metabolites, which are distributed in several metabolic pathways, were identified as potential biomarkers of NAFLD. Taking these biomarkers as screening indexes, EIH could reverse the pathological process of NAFLD through regulating the disturbed pathway of metabolism. The metabolomic results not only supply a systematic view of the development and progression of NAFLD but also provide a theoretical basis for the prevention or treatment of NAFLD.


Sign in / Sign up

Export Citation Format

Share Document