scholarly journals The rs1634330 Polymorphisms in the SOST Gene Are Associated with Body Composition in Chinese Nuclear Families with Male Offspring

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Luyue Qi ◽  
Lianyong Liu ◽  
Li Li ◽  
Weiwei Hu ◽  
Wenzhen Fu ◽  
...  

Objective. The purpose of this study was to explore the effect of the SOST gene polymorphisms on body composition in Chinese nuclear families with male offspring. Methods. 1,016 individuals were recruited from 335 Chinese nuclear families with male offspring. The nuclear families consist of at least one male offspring aged 18 to 44. We genotyped the 10 tagged single-nucleotide polymorphisms (SNPs) in SOST gene (rs7220711, rs865429, rs851057, rs1708635, rs2023794, rs1234612, rs74252774, rs1634330, rs851058, and rs1513670) in all the above people. We used dual-energy X-ray absorptiometry to measure the composition of the human body. The quantitative transmission disequilibrium test (QTDT) was used to analyze the associations of the SNPs with the body composition. Results. QTDT analysis showed that rs1634330 was significantly associated with trunk LM P < 0.05 . However, haplotypes were not found to be significantly associated with the body composition in the within-family association. The 1000 permutations were consistent with these within-family association results. Conclusions. Our results showed that the genetic variation in the SOST gene may contribute to variations in the body composition of Chinese male offspring.


2021 ◽  
Author(s):  
Alan Le Goallec ◽  
Samuel Diai ◽  
Sasha Collin ◽  
Theo Vincent ◽  
Chirag J Patel

With age, the musculoskeletal system undergoes significant changes, leading to diseases such as arthritis and osteoporosis. Due to the aging of the world population, the prevalence of such diseases is therefore expected to starkly increase in the coming decades. While numerous biological age predictors have been developed to assess musculoskeletal aging, it remains unclear whether these different approaches and data capture a single aging process, or if the diverse joints and bones in the body age at different rates. In the following, we leverage 42,000 full body, spine, hip and knee X-ray images and musculoskeletal biomarkers from the UK Biobank and use artificial intelligence to build the most accurate musculoskeletal aging predictor to date (RMSE=2.65+/-0.01 years; R-Squared=87.6+/-0.1%). Our predictor is composite and can be used to assess spine age, hip age and knee age, in addition to general musculoskeletal aging. We find that accelerated musculoskeletal aging is moderately correlated between these different musculoskeletal dimensions (e.g hip vs. knee: Pearson correlation=.351+/-.004). Musculoskeletal aging is heritable at more than 35%, and the genetic factors are partially shared between joints (e.g hip vs. knee: genetic correlation=.52+/-.04). We identified single nucleotide polymorphisms associated with accelerated musculoskeletal aging in approximately ten genes for each musculoskeletal dimension. General musculoskeletal aging is for example associated with a TBX15 variant linked to Cousin syndrome and acromegaloid facial appearance syndrome. Finally, we identified biomarkers, clinical phenotypes, diseases, environmental and socioeconomic variables associated with accelerated musculoskeletal aging in each dimension. We conclude that, while the aging of the different components of the musculoskeletal system is connected, each bone and joint can age at significantly different rates.



2018 ◽  
Vol 53 (2) ◽  
pp. 217-227 ◽  
Author(s):  
Diego Girotto Bussaneli ◽  
Manuel Restrepo ◽  
Camila Maria Bullio Fragelli ◽  
Lourdes Santos-Pinto ◽  
Fabiano Jeremias ◽  
...  

Ameloblasts are sensitive cells whose metabolism and function may be affected by inflammatory stimuli. The aim of this study was to evaluate the possible association between polymorphisms in immune response-related genes and molar-incisor hypomineralization (MIH), and their interaction with polymorphisms in amelogenesis-related genes. DNA samples were obtained from 101 nuclear families that had at least 1 MIH-affected child. Eleven single-nucleotide polymorphisms (SNPs) were investigated in immune response genes using TaqMan® technology allele-specific probes. A transmission disequilibrium test was performed to verify overtransmission of alleles in all MIH families, as well as in families only with mild or severe MIH-affected children. Gene-gene interactions between the immune-related and amelogenesis-related polymorphisms were analyzed by determining whether alleles of those genes were transmitted from heterozygous parents more often in association than individually with MIH-affected children. In severe cases of MIH, significant results were observed for rs10733708 (TGFBR1, OR = 3.5, 95% CI = 1.1–10.6). Statistical evidence for gene-gene interactions between rs6654939 (AMELX) and the SNPs rs2070874 (IL4), rs2275913 (IL17A), rs1800872 (IL10), rs1800587 (IL1A), and rs3771300 (STAT1) was observed. The rs2070874 SNP (IL4) was also significantly overtransmitted from heterozygous parents with the rs7526319 (TUFT1) and the rs2355767 (BMP2) SNPs, suggesting a synergistic effect of the transmission of these alleles with susceptibility to MIH. This family-based study demonstrated an association between variation in TGFBR1 and MIH. Moreover, the polymorphisms in immune response and amelogenesis genes may have an additive effect on the risk of developing MIH.



2020 ◽  
Vol 60 (16) ◽  
pp. 1959
Author(s):  
Camila Angelica Gonçalves ◽  
Nilva Kazue Sakomura ◽  
Miryelle Freire Sarcinelli ◽  
Letícia Graziele Pacheco ◽  
Letícia Soares ◽  
...  

Context Genetic improvements in modern strains have led to continuous increments in broiler growth rates, which, as a consequence, have resulted in higher economic returns for broiler producers over the last decades. Aim The present study was conducted to characterise the potential growth of the body and feathers of Cobb 500, Hubbard Flex and Ross 308 male and female broilers, as well as to assess the changes in chemical composition that occur up to 16 weeks of age. Methods Birds were fed isoenergetic diets divided in four phases and formulated to marginally exceed the nutritional requirements of the strains throughout the growing period. They were maintained in a controlled environment so as not to limit growth. A dual energy X-ray absorptiometry (DXA) scanner was used to follow the in vivo body composition of 12 broilers of each strain and sex (total of 72 broilers), and the feather weight and composition was determined in four birds of each strain and sex selected at intervals during the growing period (total of 288 broilers) through comparative slaughter with later chemical analysis. Key results Parameters of Gompertz growth curve to describe the strains were estimated for body and feather weight as well as for the growth of their chemical components. Conclusion Differences in the growth rates between strains were evident, indicating the possible differences in selection methods used by geneticists in the different breeding companies. These genetic parameters would explain part of the variation on broiler´s performance which impacts on the way they should be fed and housed during growth. Implications The accurate description of genetic growth potential is useful information to be associated with factorial models that predict nutritional and feed intake requirements of birds. The main advantage of DXA technology is to decrease the variation of body deposition on the Gompertz model, resulting from the use of the same bird throughout its life. Despite the speed of obtaining chemical values of the body, the method is unsuitable for measuring the growth of feathers, which is also important data to be collected and related to the broiler strains.



2020 ◽  
Vol 21 (8) ◽  
pp. 2764
Author(s):  
Taremekedzwa Allan Sanyanga ◽  
Özlem Tastan Bishop

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.



2012 ◽  
Vol 106 (3) ◽  
pp. 366-374 ◽  
Author(s):  
Eveline Boudin ◽  
Elke Piters ◽  
Torben Leo Nielsen ◽  
Marianne Andersen ◽  
Greet Roef ◽  
...  


1994 ◽  
Vol 35 (2) ◽  
pp. 282-282 ◽  
Author(s):  
A Lapillonne ◽  
B L Salle ◽  
P Braillon ◽  
M Chambon


2021 ◽  
Vol 12 ◽  
Author(s):  
Jean M. Kanellopoulos ◽  
Cássio Luiz Coutinho Almeida-da-Silva ◽  
Sirje Rüütel Boudinot ◽  
David M. Ojcius

Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.



2020 ◽  
Author(s):  
Kyung-Wan Baek ◽  
Ji-Seok Kim ◽  
Jin Sung Park ◽  
So-Jeong Kim ◽  
Yong-Chan Ha ◽  
...  

Abstract Background: As an instrument for measuring body composition in experimental animals, dual-energy X-ray absorptiometry (DXA) is ideal for accuracy, cost, and measurement efficiency. However, there is too little insight into the effectiveness of the various aspects of applying DXA to experimental animals. Therefore, we investigated whether to compare and verify the precision and accuracy of DXA and nuclear magnetic resonance (NMR) animal body composition analyzers. We used 30 ICR mice in the study. First, in order to evaluate the reproducibility of DXA and NMR, we did repeated measurements by repositioning each mouse in anesthesia and euthanasia states. Subsequently, the accuracy of each device was evaluated by comparing the weight measured before the experiment, the weight of the tissue extracted from the mice after the experiment, and the measured DXA and NMR. In addition, when measuring the body composition of animals, we compared the time and the measurable body composition parameters and summarized the advantages and disadvantages of the two devices.Results: Compared to NMR, DXA had the advantage of a fast measurement of bone composition and rapid image analysis. In addition, DXA showed a higher correlation (> 95%) with FM, body weight, and fBMC baseline than did NMR (> 85%).Conclusion: In conclusion, DXA was confirmed to have higher precision and measurement accuracy than did NMR. Therefore, DXA is an effective method for evaluating the body composition of experimental animals.



2012 ◽  
Vol 22 (5) ◽  
pp. 313-322 ◽  
Author(s):  
Alisa Nana ◽  
Gary J. Slater ◽  
Will G. Hopkins ◽  
Louise M. Burke

Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects.



Sign in / Sign up

Export Citation Format

Share Document