scholarly journals Using deep learning to analyze the compositeness of musculoskeletal aging reveals that spine, hip and knee age at different rates, and are associated with different genetic and non-genetic factors

Author(s):  
Alan Le Goallec ◽  
Samuel Diai ◽  
Sasha Collin ◽  
Theo Vincent ◽  
Chirag J Patel

With age, the musculoskeletal system undergoes significant changes, leading to diseases such as arthritis and osteoporosis. Due to the aging of the world population, the prevalence of such diseases is therefore expected to starkly increase in the coming decades. While numerous biological age predictors have been developed to assess musculoskeletal aging, it remains unclear whether these different approaches and data capture a single aging process, or if the diverse joints and bones in the body age at different rates. In the following, we leverage 42,000 full body, spine, hip and knee X-ray images and musculoskeletal biomarkers from the UK Biobank and use artificial intelligence to build the most accurate musculoskeletal aging predictor to date (RMSE=2.65+/-0.01 years; R-Squared=87.6+/-0.1%). Our predictor is composite and can be used to assess spine age, hip age and knee age, in addition to general musculoskeletal aging. We find that accelerated musculoskeletal aging is moderately correlated between these different musculoskeletal dimensions (e.g hip vs. knee: Pearson correlation=.351+/-.004). Musculoskeletal aging is heritable at more than 35%, and the genetic factors are partially shared between joints (e.g hip vs. knee: genetic correlation=.52+/-.04). We identified single nucleotide polymorphisms associated with accelerated musculoskeletal aging in approximately ten genes for each musculoskeletal dimension. General musculoskeletal aging is for example associated with a TBX15 variant linked to Cousin syndrome and acromegaloid facial appearance syndrome. Finally, we identified biomarkers, clinical phenotypes, diseases, environmental and socioeconomic variables associated with accelerated musculoskeletal aging in each dimension. We conclude that, while the aging of the different components of the musculoskeletal system is connected, each bone and joint can age at significantly different rates.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Luyue Qi ◽  
Lianyong Liu ◽  
Li Li ◽  
Weiwei Hu ◽  
Wenzhen Fu ◽  
...  

Objective. The purpose of this study was to explore the effect of the SOST gene polymorphisms on body composition in Chinese nuclear families with male offspring. Methods. 1,016 individuals were recruited from 335 Chinese nuclear families with male offspring. The nuclear families consist of at least one male offspring aged 18 to 44. We genotyped the 10 tagged single-nucleotide polymorphisms (SNPs) in SOST gene (rs7220711, rs865429, rs851057, rs1708635, rs2023794, rs1234612, rs74252774, rs1634330, rs851058, and rs1513670) in all the above people. We used dual-energy X-ray absorptiometry to measure the composition of the human body. The quantitative transmission disequilibrium test (QTDT) was used to analyze the associations of the SNPs with the body composition. Results. QTDT analysis showed that rs1634330 was significantly associated with trunk LM P < 0.05 . However, haplotypes were not found to be significantly associated with the body composition in the within-family association. The 1000 permutations were consistent with these within-family association results. Conclusions. Our results showed that the genetic variation in the SOST gene may contribute to variations in the body composition of Chinese male offspring.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 808
Author(s):  
Laura Pérez-Lago ◽  
Teresa Aldámiz-Echevarría ◽  
Rita García-Martínez ◽  
Leire Pérez-Latorre ◽  
Marta Herranz ◽  
...  

A successful Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variant, B.1.1.7, has recently been reported in the UK, causing global alarm. Most likely, the new variant emerged in a persistently infected patient, justifying a special focus on these cases. Our aim in this study was to explore certain clinical profiles involving severe immunosuppression that may help explain the prolonged persistence of viable viruses. We present three severely immunosuppressed cases (A, B, and C) with a history of lymphoma and prolonged SARS-CoV-2 shedding (2, 4, and 6 months), two of whom finally died. Whole-genome sequencing of 9 and 10 specimens from Cases A and B revealed extensive within-patient acquisition of diversity, 12 and 28 new single nucleotide polymorphisms, respectively, which suggests ongoing SARS-CoV-2 replication. This diversity was not observed for Case C after analysing 5 sequential nasopharyngeal specimens and one plasma specimen, and was only observed in one bronchoaspirate specimen, although viral viability was still considered based on constant low Ct values throughout the disease and recovery of the virus in cell cultures. The acquired viral diversity in Cases A and B followed different dynamics. For Case A, new single nucleotide polymorphisms were quickly fixed (13–15 days) after emerging as minority variants, while for Case B, higher diversity was observed at a slower emergence: fixation pace (1–2 months). Slower SARS-CoV-2 evolutionary pace was observed for Case A following the administration of hyperimmune plasma. This work adds knowledge on SARS-CoV-2 prolonged shedding in severely immunocompromised patients and demonstrates viral viability, noteworthy acquired intra-patient diversity, and different SARS-CoV-2 evolutionary dynamics in persistent cases.


Author(s):  
Wan-Yu Lin

Abstract Background Biological age (BA) can be estimated by phenotypes and is useful for predicting lifespan and healthspan. Levine et al. proposed a PhenoAge and a BioAge to measure BA. Although there have been studies investigating the genetic predisposition to BA acceleration in Europeans, little has been known regarding this topic in Asians. Methods I here estimated PhenoAgeAccel (age-adjusted PhenoAge) and BioAgeAccel (age-adjusted BioAge) of 94,443 Taiwan Biobank (TWB) participants, wherein 25,460 TWB1 subjects formed a discovery cohort and 68,983 TWB2 individuals constructed a replication cohort. Lifestyle factors and genetic variants associated with PhenoAgeAccel and BioAgeAccel were investigated through regression analysis and a genome-wide association study (GWAS). Results A unit (kg/m 2) increase of BMI was associated with a 0.177-year PhenoAgeAccel (95% C.I. = 0.163~0.191, p = 6.0×) and 0.171-year BioAgeAccel (95% C.I. = 0.165~0.177, p = 0). Smokers on average had a 1.134-year PhenoAgeAccel (95% C.I. = 0.966~1.303, p = 1.3×) compared with non-smokers. Drinkers on average had a 0.640-year PhenoAgeAccel (95% C.I. = 0.433~0.847, p = 1.3×) and 0.193-year BioAgeAccel (95% C.I. = 0.107~0.279, p = 1.1×) relative to non-drinkers. A total of 11 and 4 single-nucleotide polymorphisms (SNPs) were associated with PhenoAgeAccel and BioAgeAccel (p&lt;5× in both TWB1 and TWB2), respectively. Conclusions A PhenoAgeAccel-associated SNP (rs1260326 in GCKR) and two BioAgeAccel-associated SNPs (rs7412 in APOE; rs16998073 near FGF5) were consistent with the finding from the UK Biobank. The lifestyle analysis shows that prevention from obesity, cigarette smoking, and alcohol consumption is associated with a slower rate of biological aging.


Biomolecules ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 574 ◽  
Author(s):  
Santiago-Ruiz ◽  
Buendía-Roldán ◽  
Pérez-Rubio ◽  
Ambrocio-Ortiz ◽  
Mejía ◽  
...  

Among hypersensitivity pneumonitis (HP) patients have been identified who develop autoantibodies with and without clinical manifestations of autoimmune disease. Genetic factors involved in this process and the effect of these autoantibodies on the clinical phenotype are unknown. Matrix metalloproteinases (MMPs) have an important role in architecture and pulmonary remodeling. The aim of our study was to identify polymorphisms in the MMP1, MMP2, MMP9 and MMP12 genes associated with susceptibility to HP with the presence of autoantibodies (HPAbs+). Using the dominant model of genetic association, comparisons were made between three groups. For rs7125062 in MMP1 (CC vs. CT+TT), we found an association when comparing groups of patients with healthy controls: HPAbs+ vs. HC (p < 0.001, OR = 10.62, CI 95% = 4.34 − 25.96); HP vs. HC (p < 0.001, OR = 7.85, 95% CI 95% = 4.54 − 13.57). This rs11646643 in MMP2 shows a difference in the HPAbs+ group by the dominant genetic model GG vs. GA+AA, (p = 0.001, OR = 8.11, CI 95% = 1.83 − 35.84). In the linear regression analysis, rs11646643 was associated with a difference in basal forced vital capacity (FVC)/12 months (p = 0.013, = 0.228, 95% CI95% = 1.97 − 16.72). We identified single-nucleotide polymorphisms (SNPs) associated with the risk of developing HP, and with the evolution towards the phenotype with the presence of autoantibodies. Also, to the decrease in plasma MMP-2 levels.


2020 ◽  
Vol 21 (8) ◽  
pp. 2764
Author(s):  
Taremekedzwa Allan Sanyanga ◽  
Özlem Tastan Bishop

Human carbonic anhydrase 8 (CA-VIII) is an acatalytic isoform of the α -CA family. Though the protein cannot hydrate CO2, CA-VIII is essential for calcium (Ca2+) homeostasis within the body, and achieves this by allosterically inhibiting the binding of inositol 1,4,5-triphosphate (IP3) to the IP3 receptor type 1 (ITPR1) protein. However, the mechanism of interaction of CA-VIII to ITPR1 is not well understood. In addition, functional defects to CA-VIII due to non-synonymous single nucleotide polymorphisms (nsSNVs) result in Ca2+ dysregulation and the development of the phenotypes such as cerebellar ataxia, mental retardation and disequilibrium syndrome 3 (CAMRQ3). The pathogenesis of CAMRQ3 is also not well understood. The structure and function of CA-VIII was characterised, and pathogenesis of CAMRQ3 investigated. Structural and functional characterisation of CA-VIII was conducted through SiteMap and CPORT to identify potential binding site residues. The effects of four pathogenic nsSNVs, S100A, S100P, G162R and R237Q, and two benign S100L and E109D variants on CA-VIII structure and function was then investigated using molecular dynamics (MD) simulations, dynamic cross correlation (DCC) and dynamic residue network (DRN) analysis. SiteMap and CPORT analyses identified 38 unique CA-VIII residues that could potentially bind to ITPR1. MD analysis revealed less conformational sampling within the variant proteins and highlighted potential increases to variant protein rigidity. Dynamic cross correlation (DCC) showed that wild-type (WT) protein residue motion is predominately anti-correlated, with variant proteins showing no correlation to greater residue correlation. DRN revealed variant-associated increases to the accessibility of the N-terminal binding site residues, which could have implications for associations with ITPR1, and further highlighted differences to the mechanism of benign and pathogenic variants. SNV presence is associated with a reduction to the usage of Trp37 in all variants, which has implications for CA-VIII stability. The differences to variant mechanisms can be further investigated to understand pathogenesis of CAMRQ3, enhancing precision medicine-related studies into CA-VIII.


2017 ◽  
Vol 145 (12) ◽  
pp. 2618-2625
Author(s):  
L. JIN ◽  
S. XU ◽  
P. A. C. MAPLE ◽  
W. XU ◽  
K. E. BROWN

SummaryVaricella–zoster virus (VZV) infection (chickenpox) results in latency and subsequent reactivation manifests as shingles. Effective attenuated vaccines (vOka) are available for prevention of both illnesses. In this study, an amplicon-based sequencing method capable of differentiating between VZV wild-type (wt) strains and vOka vaccine is described. A total of 44 vesicular fluid specimens collected from 43 patients (16 from China and 27 from the UK) with either chickenpox or shingles were investigated, of which 10 had received previous vaccination. Four sets of polymerase chain reactions were set up simultaneously with primers amplifying regions encompassing four single nucleotide polymorphisms (SNPs), ‘69349-106262-107252-108111’. Nucleotide sequences were generated by Sanger sequencing. All samples except one had a wt SNP profile of ‘A-T-T-T’. The sample collected from a patient who received vaccine 7–10 days ago, along with VZV vaccine preparations, Zostavax and Baike-varicella gave a SNP profile ‘G-C-C-C’. The results show that this method can distinguish vaccine-derived virus from wt viruses from main four clades, (clades 1–4) and should be of utility worldwide.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jean M. Kanellopoulos ◽  
Cássio Luiz Coutinho Almeida-da-Silva ◽  
Sirje Rüütel Boudinot ◽  
David M. Ojcius

Extracellular nucleotides are important mediators of activation, triggering various responses through plasma membrane P2 and P1 receptors. P2 receptors are further subdivided into ionotropic P2X receptors and G protein-coupled P2Y receptors. P2X4 is an ATP-gated cation channel broadly expressed in most tissues of the body. Within the P2X family, P2X4 has a unique subcellular distribution, being preferentially localized in lysosomes. In these organelles, high ATP concentrations do not trigger P2X4 because of the low pH. However, when the pH increases to 7.4, P2X4 can be stimulated by intra-lysosomal ATP, which is in its active, tetra-anionic form. Elucidation of P2X4, P2X3 and P2X7 structures has shed some light on the functional differences between these purinergic receptors. The potential interaction between P2X4 and P2X7 has been extensively studied. Despite intensive effort, it has not been possible yet to determine whether P2X4 and P2X7 interact as heterotrimers or homotrimers at the plasma membrane. However, several publications have shown that functional interactions between P2X4 and P2X7 do occur. Importantly, these studies indicate that P2X4 potentiates P2X7-dependent activation of inflammasomes, leading to increased release of IL-1β and IL-18. The role of P2X4 in various diseases could be beneficial or deleterious even though the pathophysiological mechanisms involved are still poorly defined. However, in diseases whose physiopathology involves activation of the NLRP3 inflammasome, P2X4 was found to exacerbate severity of disease. The recent production of monoclonal antibodies specific for the human and mouse P2X4, some of which are endowed with agonist or antagonist properties, raises the possibility that they could be used therapeutically. Analysis of single nucleotide polymorphisms of the human P2RX4 gene has uncovered the association of P2RX4 gene variants with susceptibility to several human diseases.


2021 ◽  
Author(s):  
Jasna Letícia Pinto Paz ◽  
Maria do Perpétuo Socorro Corrêa Amador Silvestre ◽  
Letícia Siqueira Moura ◽  
Ismari Perini Furlaneto ◽  
Yan Corrêa Rodrigues ◽  
...  

The transmission and evolution of leprosy depends on several aspects, including immunological and genetic factors of the host, as well as genetic factors of Mycobacterium leprae. This study evaluated the association of single nucleotide polymorphisms (SNPs) on the FokI (rs2228570), TaqI (rs731236), ApaI (rs7975232) regions of the vitamin D receptor (VDR) gene with leprosy. A total of 405 individuals were evaluated, composed by groups of 100 multibacillary and 57 paucibacillary patients, and 248 healthy contacts. Blood samples were collected from patients and contacts. The genotyping was performed by sequencing of the interest regions. The alleles of the studied SNPs, and of SNP FokI genotypes, were not associated with leprosy. For the SNP on TaqI region, the relationship between the tt genotype, and for the SNP ApaI, the AA genotype, revealed an association with susceptibility to MB form, while Aa genotype with protection. The extended genotypes AaTT and AaTt of ApaI and TaqI were associated with protection to against MB form. Futher studies analyzing the expression of the VDR gene and the correlation with its SNPs might help to clarify the role of polymorphisms on the immune response in leprosy.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Babenko Alina ◽  
Popkova Daria ◽  
Freylihman Olga ◽  
Solncev Vladislav ◽  
Kostareva Anna ◽  
...  

Clinical symptoms vary in thyrotoxicosis, and severity of these depends on many factors. Over the last years, impact of genetic factors upon the development and clinical significance of thyrotoxic symptoms became evident. It is known that a production of T3 in various tissues is limited by deiodinase 2 (D2). Recent studies revealed that certain single nucleotide polymorphisms (including threonine (Thr) to alanine (Ala) replacement in D2 gene codon 92, D2 Thr92Ala) affect T3 levels in tissues and in serum. Individuals with Ala92Ala genotype have lower D2 activity in tissues, compared with that in individuals with other genotypes. In our study, we have assessed an association of D2 Thr92Ala polymorphism with (1) frequency of disease development, (2) severity of clinical symptoms of thyrotoxicosis, and (3) rate of remissions, in Graves' disease patients.


Sign in / Sign up

Export Citation Format

Share Document