scholarly journals Idebenone-Activating Autophagic Degradation of α-Synuclein via Inhibition of AKT-mTOR Pathway in a SH-SY5Y-A53T Model of Parkinson’s Disease: A Network Pharmacological Approach

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Pei Kun He ◽  
Yu Yuan Gao ◽  
Feng-Juan Lyu ◽  
Jia Ning Chen ◽  
Yu Hu Zhang ◽  
...  

Background. Parkinson’s disease (PD) is the second most common neurodegenerative disease worldwide, which currently lacks disease-modifying therapy to slow down its progression. Idebenone, a coenzyme Q10 (CQ10) analogue, is a well-known antioxidant and has been used to treat neurological disorders. However, the mechanism of Idebenone on PD has not been fully elucidated. This study aims to predict the potential targets of Idebenone and explore its therapeutic mechanism against PD. Method. We obtained potential therapeutic targets through database prediction, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Next, we constructed and analyzed a protein-protein interaction network (PPI) and a drug-target-pathway-disease network. A molecular docking test was conducted to identify the interactions between Idebenone and potential targets. Lastly, a PD cell line of SH-SY5Y overexpressing mutant α-synuclein was used to validate the molecular mechanism. Result. A total of 87 targets were identified based on network pharmacology. The enrichment analysis highlighted manipulation of MAP kinase activity and the PI3K-AKT signaling pathway as potential pharmacological targets for Idebenone against PD. Additionally, molecular docking showed that AKT and MAPK could bind tightly with Idebenone. In the cell model of PD, Idebenone activated autophagy and promoted α-synuclein degradation by suppressing the AKT/mTOR pathway. Pretreating cells with chloroquine (CQ) to block autophagic flux could diminish the pharmacological effect of Idebenone to clear α-synuclein. Conclusion. This study demonstrated that Idebenone exerts its anti-PD effects by enhancing autophagy and clearance of α-synuclein, thus providing a theoretical and experimental basis for Idebenone therapy against PD.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Minglong Guan ◽  
Lan Guo ◽  
Hengli Ma ◽  
Huimei Wu ◽  
Xiaoyun Fan

Rosmarinic acid (RosA) is a natural phenolic acid compound, which is mainly extracted from Labiatae and Arnebia. At present, there is no systematic analysis of its mechanism. Therefore, we used the method of network pharmacology to analyze the mechanism of RosA. In our study, PubChem database was used to search for the chemical formula and the Chemical Abstracts Service (CAS) number of RosA. Then, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was used to evaluate the pharmacodynamics of RosA, and the Comparative Toxicogenomics Database (CTD) was used to identify the potential target genes of RosA. In addition, the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of target genes were carried out by using the web-based gene set analysis toolkit (WebGestalt). At the same time, we uploaded the targets to the STRING database to obtain the protein interaction network. Then, we carried out a molecular docking about targets and RosA. Finally, we used Cytoscape to establish a visual protein-protein interaction network and drug-target-pathway network and analyze these networks. Our data showed that RosA has good biological activity and drug utilization. There are 55 target genes that have been identified. Then, the bioinformatics analysis and network analysis found that these target genes are closely related to inflammatory response, tumor occurrence and development, and other biological processes. These results demonstrated that RosA can act on a variety of proteins and pathways to form a systematic pharmacological network, which has good value in drug development and utilization.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan-yun Liu ◽  
Li-hua Yu ◽  
Juan Zhang ◽  
Dao-jun Xie ◽  
Xin-xiang Zhang ◽  
...  

This study is aimed at exploring the possible mechanism of action of the Suanzaoren decoction (SZRD) in the treatment of Parkinson’s disease with sleep disorder (PDSD) based on network pharmacology and molecular docking. Traditional Chinese Medicine Systems Pharmacology (TCMSP) was used to screen the bioactive components and targets of SZRD, and their targets were standardized using the UniProt platform. The disease targets of “Parkinson’s disease (PD)” and “Sleep disorder (SD)” were collected by OMIM, GeneCards, and DisGeNET databases. Thereafter, the protein-protein interaction (PPI) network was constructed using the STRING platform and visualized by Cytoscape (3.7.2) software. Then, the DAVID platform was used to analyze the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Cytoscape (3.7.2) software was also used to construct the network of the “herb-component-target-pathway.” The core active ingredients and core action targets of the drug were verified by molecular docking using AutoDock software. A total of 135 Chinese herbal components and 41 corresponding targets were predicted for the treatment of PDSD using SZRD. Fifteen important signaling pathways were screened, such as the cancer pathway, TNF signaling pathway, PI3K-AKT signaling pathway, HIF-1 signaling pathway, and Toll-like receptor signaling pathway. The results of molecular docking showed that the main active compounds could bind to the representative targets and exhibit good affinity. This study revealed that SZRD has the characteristics and advantages of “multicomponent, multitarget, and multipathway” in the treatment of PDSD; among these, the combination of the main active components of quercetin and kaempferol with the key targets of AKT1, IL6, MAPK1, TP53, and VEGFA may be one of the important mechanisms. This study provides a theoretical basis for further study of the material basis and molecular mechanism of SZRD in the treatment of PDSD.


2021 ◽  
Vol 16 (1) ◽  
pp. 1934578X2098213
Author(s):  
Xiaodong Deng ◽  
Yuhua Liang ◽  
Jianmei Hu ◽  
Yuhui Yang

Diabetes mellitus (DM) is a chronic disease that is very common and seriously threatens patient health. Gegen Qinlian decoction (GQD) has long been applied clinically, but its mechanism in pharmacology has not been extensively and systematically studied. A GQD protein interaction network and diabetes protein interaction network were constructed based on the methods of system biology. Functional module analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Gene Ontology (GO) enrichment analysis were carried out on the 2 networks. The hub nodes were filtered by comparative analysis. The topological parameters, interactions, and biological functions of the 2 networks were analyzed in multiple ways. By applying GEO-based external datasets to verify the results of our analysis that the Gene Set Enrichment Analysis (GSEA) displayed metabolic pathways in which hub genes played roles in regulating different expression states. Molecular docking is used to verify the effective components that can be combined with hub nodes. By comparing the 2 networks, 24 hub targets were filtered. There were 7 complex relationships between the networks. The results showed 4 topological parameters of the 24 selected hub targets that were much higher than the median values, suggesting that these hub targets show specific involvement in the network. The hub genes were verified in the GEO database, and these genes were closely related to the biological processes involved in glucose metabolism. Molecular docking results showed that 5,7,2', 6'-tetrahydroxyflavone, magnograndiolide, gancaonin I, isoglycyrol, gancaonin A, worenine, and glyzaglabrin produced the strongest binding effect with 10 hub nodes. This compound–target mode of interaction may be the main mechanism of action of GQD. This study reflected the synergistic characteristics of multiple targets and multiple pathways of traditional Chinese medicine and discussed the mechanism of GQD in the treatment of DM at the molecular pharmacological level.


2021 ◽  
Author(s):  
Xiting Wang ◽  
Tao Lu

Abstract Due to the severity of the COVID-19 epidemic, to identify a proper treatment for COVID-19 is of great significance. Traditional Chinese Medicine (TCM) has shown its great potential in the prevention and treatment of COVID-19. One of TCM decoction, Lianhua Qingwen decoction displayed promising treating efficacy. Nevertheless, the underlying molecular mechanism has not been explored for further development and treatment. Through systems pharmacology and network pharmacology approaches, we explored the potential mechanisms of Lianhua Qingwen treating COVID-19 and acting ingredients of Lianhua Qingwen decoction for COVID-19 treatment. Through this way, we generated an ingredients-targets database. We also used molecular docking to screen possible active ingredients. Also, we applied the protein-protein interaction network and detection algorithm to identify relevant protein groupings of Lianhua Qingwen. Totally, 605 ingredients and 1,089 targets were obtained. Molecular Docking analyses revealed that 35 components may be the promising acting ingredients, 7 of which were underlined according to the comprehensive analysis. Our enrichment analysis of the 7 highlighted ingredients showed relevant significant pathways that could be highly related to their potential mechanisms, e.g. oxidative stress response, inflammation, and blood circulation. In summary, this study suggests the promising mechanism of the Lianhua Qingwen decoction for COVID-19 treatment. Further experimental and clinical verifications are still needed.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Mengshi Tang ◽  
Xi Xie ◽  
Pengji Yi ◽  
Jin Kang ◽  
Jiafen Liao ◽  
...  

Objective. To explore the main components and unravel the potential mechanism of simiao pill (SM) on rheumatoid arthritis (RA) based on network pharmacological analysis and molecular docking. Methods. Related compounds were obtained from TCMSP and BATMAN-TCM database. Oral bioavailability and drug-likeness were then screened by using absorption, distribution, metabolism, and excretion (ADME) criteria. Additionally, target genes related to RA were acquired from GeneCards and OMIM database. Correlations about SM-RA, compounds-targets, and pathways-targets-compounds were visualized through Cytoscape 3.7.1. The protein-protein interaction (PPI) network was constructed by STRING. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed via R packages. Molecular docking analysis was constructed by the Molecular Operating Environment (MOE). Results. A total of 72 potential compounds and 77 associated targets of SM were identified. The compounds-targets network analysis indicated that the 6 compounds, including quercetin, kaempferol, baicalein, wogonin, beta-sitosterol, and eugenol, were linked to ≥10 target genes, and the 10 target genes (PTGS1, ESR1, AR, PGR, CHRM3, PPARG, CHRM2, BCL2, CASP3, and RELA) were core target genes in the network. Enrichment analysis indicated that PI3K-Akt, TNF, and IL-17 signaling pathway may be a critical signaling pathway in the network pharmacology. Molecular docking showed that quercetin, kaempferol, baicalein, and wogonin have good binding activity with IL6, VEGFA, EGFR, and NFKBIA targets. Conclusion. The integrative investigation based on bioinformatics/network topology strategy may elaborate on the multicomponent synergy mechanisms of SM against RA and provide the way out to develop new combination medicines for RA.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Sha Di ◽  
Lin Han ◽  
Qing Wang ◽  
Xinkui Liu ◽  
Yingying Yang ◽  
...  

Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first, we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each node in the network, 400 major targets of SQDHD were obtained. The pathway enrichment analysis results acquired from DAVID showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure, regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses and pathways. This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of SQDHD in clinical practice.


2021 ◽  
Author(s):  
Lu Sun ◽  
Zining Wang ◽  
Jian Li ◽  
Li Xu ◽  
Xiaoou Xue

Abstract Background: Primary dysmenorrhea(PD)is the most common gynecologic disorder.Despite the prevalence is high, it is often underdiagnosed,undertreated and normalized even by patients themselves. Guizhi Fuling Formula (GFF) is experientially used for the treatment of PD in a long time. Therefore, the efficiency and potential mechanism are waiting to identify.Methods: We adopted network pharmacology integrated molecular docking strategy in this study.Based on published literatures, the relative compounds of GFF were selected preliminarily. Secondly, the putative targets of PD were obtained by wide-searching DisGeNET, OMIM, Drugbank and GeneCards databases.With protein-protein interaction(PPI) analysis, GO and KEGG pathway enrichment analysis and molecular docking ,we systematically evaluated the relationship of herb ingredients and disease targets.Results: The results showed that 30 ingredients of GFF and 43 hub targets made a difference.Under the further analysis,8 targets(EGFR,AKT1,PTGS2,TNF,ESR1,AHR,CTNNB1,CXCL8) were recognized as key therapeutic targets with excellent binding. The enrichment analyses indicated that the GFF had the potential to influence varieties of biological pathways, especially the pathways in cancer and steroid hormone biosynthesis, which play an important part in the pathogenesis of primary dysmenorrhea.Conclusion: GFF influenced primary dysmenorrhea through the synergistic effect of multiple components, multiple targets, and multiple pathways.This study predictedthe potential mechanism, hope that could made contribution for clinical application and scientific research.


2020 ◽  
Author(s):  
Rong-Bin Chen ◽  
Ying-Dong Yang ◽  
Kai Sun ◽  
Shan Liu ◽  
Wei Guo ◽  
...  

Abstract Background: Postmenopausal osteoporosis (PMOP) is a global chronic and metabolic bone disease, which poses huge challenges to individuals and society. Ziyin Tongluo Formula (ZYTLF) has been proved effective in the treatment of PMOP. However, the material basis and mechanism of ZYLTF against PMOP have not been thoroughly elucidated.Methods: Online databases were used to identify the active ingredients of ZYTLF and corresponding putative targets. Genes associated with PMOP were mined, and then mapped with the putative targets to obtain overlapping genes. Multiple networks were constructed and analyzed, from which the key genes were selected. The key genes were imported to the DAVID database to performs GO and KEGG pathway enrichment analysis. Finally, AutoDock Tools and other software were used for molecular docking of core compounds and key proteins. Results: Ninety-two active compounds of ZYTLF corresponded to 243 targets, with 129 target genes interacting with PMOP, and 50 key genes were selected. Network analysis showed the top 5 active ingredients including quercetin, kaempferol, luteolin, scutellarein, and formononetin., and the top 50 key genes such as VEGFA, MAPK8, AKT1, TNF, ESR1. Enrichment analysis uncovered two significant types of KEGG pathways in PMOP, hormone-related signaling pathways (estrogen , prolactin, and thyroid hormone signaling pathway) and inflammation-related pathways (TNF, PI3K-Akt, and MAPK signaling pathway). Moreover, molecular docking analysis verified that the main active compounds were tightly bound to the core proteins, further confirming the anti-PMOP effects. Conclusions: Based on network pharmacology and molecular docking technology, this study initially revealed the mechanisms of ZYTLF on PMOP, which involves multiple targets and multiple pathways.


2021 ◽  
Author(s):  
Xi Yin ◽  
Miao Wang ◽  
Wei Wang ◽  
Tong Chen ◽  
Ge Song ◽  
...  

Abstract Parkinson’s disease (PD) is a common neurodegenerative disease and the mechanism underlying PD pathogenesis is incompletely understood. Increasing evidence indicates that microRNA (miRNA) plays critical regulatory role in the pathogenesis of PD. This study aimed to determine the miRNA-mRNA regulatory network for PD. The differentially expressed miRNAs (DEmis) and genes (DEGs) between PD patients and healthy donors were screened from miRNA dataset GSE16658 and mRNA dataset GSE100054 downloaded from the Gene Expression Omnibus (GEO) database. Target genes of the DEmis were selected when predicted by 3 or 4 online databases and overlapped with DEGs from GSE100054. Next, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted by Database for Annotation, Visualization and Integrated Discovery (DAVID) and Metascape analytic tool. The correlation between the screened genes and PD was evaluated by the online tool Comparative Toxicogenomics Database (CTD). The protein-protein interactions (PPI) network was built by STRING platform. Finally, we testify the expression of members of the miRNA-mRNA regulatory network in the blood samples collected from PD patients and healthy donors by using qRT-PCR. 1505 upregulated and 1302 downregulated DEGs, 77 upregulated DEmis and 112 downregulated DEmis were preliminarily screened from GEO database. Through further functional enrichment analysis, 10 PD-related hub genes were selected, including RAC1, IRS2, LEPR, PPARGC1A, CAMKK2, RAB10, RAB13, RAB27B, RAB11A and JAK2, which were mainly involved in Rab protein signaling transduction, AMPK signaling pathway and signaling by Leptin. The miRNA-mRNA regulatory network was constructed with 10 hub genes and their interacting miRNAs overlapped with DEmis, including miR-30e-5p, miR-142-3p, miR-101-3p, miR-32-3p, miR-508-5p, miR-642a-5p, miR-19a-3p and miR-21-5p. Analysis on clinical samples verified significant upregulation of LEPR and downregulation of miR-101-3p in PD patients compared with healthy donors. In the study, the potential miRNA-mRNA regulatory network was constructed in PD, which may provide novel insight into pathogenesis and treatment of PD.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Yunhong Yin ◽  
Jianyu Liu ◽  
Mengyu Zhang ◽  
Rui Li ◽  
Xiao Liu ◽  
...  

YuPingFeng (YPF) granules are a classic herbal formula extensively used in clinical practice in China for the treatment of COPD. However, the pathological mechanisms of YPF in COPD remain undefined. In the present research, a network pharmacology-based strategy was implemented to elucidate the underlying multicomponent, multitarget, and multipathway modes of action of YPF against COPD. First, we identified putative YPF targets based on TCMSP databases and constructed a network containing interactions between putative YPF targets and known therapeutic targets of COPD. Next, two topological parameters, “degree” and “closeness,” were calculated to identify target genes in the network. The major hubs were imported to the MetaCore database for pathway enrichment analysis. In total, 23 YPF active ingredients and 83 target genes associated with COPD were identified. Through protein interaction network analysis, 26 genes were identified as major hubs due to their topological importance. GO and KEGG enrichment analysis results revealed YPF to be mainly associated with the response to glucocorticoids and steroid hormones, with apoptotic and HIF-1 signalling pathways being dominant and correlative pathways. The promising utility of YPF in the treatment of COPD has been demonstrated by a network pharmacology approach.


Sign in / Sign up

Export Citation Format

Share Document