scholarly journals Numerical and Field Investigations on Rockburst Risk Adjacent to Irregular Coal Pillars and Fault

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhi-long He ◽  
Cai-ping Lu ◽  
Xiu-feng Zhang ◽  
Chao Wang ◽  
Bao-qi Wang ◽  
...  

Irregular coal pillars are often reserved in the upper coal seam in multiseam mining due to the limitation of geological conditions and mining methods. Diffused and transmitted stress in the pillars will form the stress concentrated areas in the lower coal seam and will increase the risk of rockburst. Based on the upper irregular pillars and fault encountered in the 7301 working face of the Zhaolou coal mine, this paper studies the evolution of stress and energy when the working face passed through the area affected by pillars. The adopted methods include numerical simulations and field monitoring. The change in stress concentration factor and stress gradient because of the mining activities in lower coal seam was analyzed by numerical simulation, indicating that the stress gradient reaches a peak when the working face is closed to the area under the edge and junction of pillars, which has the high risk of inducing rockburst. The sources’ location, variation rule of microseismic (MS) total energy and events, frequency spectrum distributions, and source parameters are discussed, respectively, based on the field monitoring data. The main conclusions were obtained as follows: (1) The total energy and event counts reach the peak when working face is close to the area under the edge and the junction of pillars. (2) The dominant frequency transfers from high frequency to low frequency, the stress drop reaches the peak value, the energy index decreases sharply, and the cumulative apparent volume increases sharply, which all are obvious precursory characteristics before rockburst.

2020 ◽  
Author(s):  
Zizheng Zhang ◽  
Jianbiao Bai ◽  
Xianyang Yu ◽  
Weijian Yu ◽  
Min Deng ◽  
...  

Abstract Gob-side entry retained with roadside filling (GER-RF) plays a key role in achieving coal mining without pillar and improving the coal resource recovery rate. Since there are few reports on the cyclic filling length of GER-RF, a method based on the stress difference method is proposed to determine the cyclic filling length of GER-RF. Firstly, a stability analysis mechanics model of the immediate roof above roadside filling area in GER was established, then the relationship between the roof stress distribution and the unsupported roof length was obtained by the stress difference method. According to the roof stability above roadside filling area based on the relationship between the roof stress and its tensile strength, the maximum unsupported roof length and rational cyclic filling length of GER-RF. Combined with the geological conditions of the 1103 thin coal seam working face of Heilong Coal Mine and the geological conditions of the 1301 thick coal seam working face of Licun Coal Mine, this suggested method was applied to determine that the rational cyclic filling lengths of GER-RF were 2.4 m and 3.2 m, respectively. Field trial tests show that the suggested method can effectively control the surrounding rock deformation along with rational road-in support and roadside support, and improve the filling and construction speed.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ze Liao ◽  
Tao Feng ◽  
Weijian Yu ◽  
Genshui Wu ◽  
Ke Li ◽  
...  

In this study, both theoretical analysis and similar simulation experiment are employed to investigate the overburden failure law of fully mechanized face in the steep coal seam. By establishing the mechanical model of inclined rock beam, the deflection equation of overlying strata beam is obtained. Based on the geological conditions of Xiangyong coal mine in Hunan Province of China, the laws of roof deformation and failure in steep coal seam are obtained by similar simulation experiments. The results showed that the roof deformation of the goaf is relatively large after the working face advances along the strike, and the deformation mainly occurs in the upper roof of the goaf. The backward gangue in the immediate roof fills the lower part of the goaf, which plays a supporting role in the lower part of the roof and floor. The roof fracture of goaf is located in the middle and upper parts of the working face, which is consistent with the results derived from the mechanical model. After the roof fracture, a “trapezoid” bending fracture area and the secondary stability system area is formed, which is composed of four areas: the lower falling and filling support area, the upper strata bending fracture area, the fracture extension area, and the roof bending sinking area.


2012 ◽  
Vol 524-527 ◽  
pp. 466-470
Author(s):  
Jun Ling Hou ◽  
Yan Sun

Based on the geological conditions and specific mining technology conditions of the 11014 mining face of Panbei mine in HuaiNan mining group ,using the FLAC3D software, simulate the stress distribution rule and disruption field distribution rule of surrounding rock of Fully-Mechanized face enhancing the upper limit for coal mining along the tendency and trend of coal seam by different mining speed of 6 m/d, 4 m/d and 2 m/d. draw the conclusion that enhancing the mining speed can alleviate the pressure of the working face ,improve the working face mechanical environment,and reduce the extent of the failure field.It provides the theory basis and reference for Fully-Mechanized face enhancing the upper limit for coal mining under similar conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zhihua Li ◽  
Ke Yang ◽  
Jianshuai Ji ◽  
Biao Jiao ◽  
Xiaobing Tian

A case study based on the 401103 fully mechanized caving face in the Hujiahe Coal Mine was carried out in this research to analyze the rock burst risks in a 54 m-wide coal pillar for roadway protection. Influencing factors of rock burst risks on the working face were analyzed. Stress distribution characteristics on the working face of the wide coal pillar for roadway protection were discussed using FLAC3D numerical simulation software. Spatial distribution characteristics of historical impact events on the working face were also investigated using the microseismic monitoring method. Results show that mining depth, geological structure, outburst proneness of coal strata, roof strata structure, adjacent mining area, and mining influence of the current working face are the main influencing factors of rock burst on the working face. Owing to the collaborative effects of front abutment pressure of the working face and lateral abutment pressure in the goaf, the coal pillar is in the ultimate equilibrium state and microseismic events mainly concentrate in places surrounding the coal pillars. Hence, wide coal pillars become the regions with rock burst risks on the working face. The working face adopts some local prevention technologies, such as pressure relief through presplitting blasting in roof, pressure relief through large-diameter pores in coal seam, coal seam water injection, pressure relief through large-diameter pores at bottom corners, and pressure relief through blasting at bottom corners. Moreover, some regional prevention technologies were proposed for narrow coal pillar for roadway protection, including gob-side entry, layer mining, and fully mechanized top-coal caving face with premining top layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Ming Zhang ◽  
Chen Cao ◽  
Bingjie Huo

The condition of the coal pillars remained in the room-and-pillar gobs is complicated. The stresses loaded on the pillar floor may be transmitted and overlapped. It changes the stress environment of the lower coal seam roof, leading abnormal periodic weighting. In the procedure of coal seam 3−1 mining in the Huoluowan Coal Mine, the ground stress is high while the working face passing through the room pillars of overlying coal seam 2−2, leading to hydraulic shield being broken. In this paper, theoretical analysis, numerical calculation, and similar material simulation were used to analyse the stress environment of lower seam and the effect of coal pillars remained in close-distanced upper seam. The stress transfer model was established for the room pillars of coal seam 2−2, and the stress distribution of underlying strata was obtained based on theoretical analysis. The joint action of dynamic pressure of high stress-coal pillar with movement of overlying rock strata in the working face 3−1 under the coal pillar was revealed. The results showed that the horizontal stress and vertical stress under the large coal pillar of the room gob in coal seam 2−2 were high, being from 9.7 to 15.3 MPa. The influencing depth of vertical stress ranged from 42 m to 58 m. The influencing depth of horizontal stress ranged from 10 to 23 m. The influencing range of the shear stress was from 25 to 50 m. When the working face 3−1 was mined below the coal pillar of 20 m or 50 m, abutment pressure was relatively high. The stress concentration coefficient reached 4.44–5.00. The dynamic pressure of the working face was induced by the stress overlying of the upper and lower coal seams, instability of the inverted trapezoid rock pillar above the coal pillar, and collapsing movement of the roof. The studying results were beneficial for guiding the safety mining of the coal seam 3−1 in the Huoluowan Coal Mine.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xingen Ma ◽  
Manchao He ◽  
Xuewei Sun ◽  
Jianfeng Li ◽  
Gang He ◽  
...  

Gob-side entry retaining technology with roof cutting (GERRC) has been widely used in flat and near-flat coal seam conditions, but its application under inclined coal seam is still very deficient. In order to further improve the application system of GERRC and overcome the application difficulties under special geological conditions, this paper takes the 43073 working face of Yixin coal mine as an example to research the GERRC with upper roadway under gently inclined thick coal seam. Firstly, the difficulties in the upper entry retaining with inclined coal seam are analyzed and the corresponding key technologies and system designs are put forward. Subsequently, the roof cutting and upper entry retaining are designed in detail according to geological conditions of test working face, and the roof cutting and pressure releasing effect is analyzed by numerical simulation to expound the stress distribution and pressure releasing mechanism of surrounding rock. Finally, the upper entry retaining field test is carried out to verify the feasibility and applicability of the technology and related designs. Through field monitoring, it is found that the weighting step increases significantly, the weighting strength decreases effectively on the roof cutting side, and the pressure relief effect is obvious. Meanwhile, the maximum roof to floor convergence is 361 mm and the maximum shrinkage of both sides is 280 mm, so the retained entry can meet the reuse requirement of adjacent working face.


2020 ◽  
Vol 13 (2) ◽  
pp. 99-108
Author(s):  
Yanxiang Wang ◽  
Daolong Yang ◽  
Bangsheng Xing ◽  
Tingting Zhao ◽  
Zhiyi Sun ◽  
...  

Background:: China's thin and extremely thin coal seam resources are widely distributed and rich in reserves. These coal seams account for 20% of the recoverable reserves, with 9.83 billion tons of industrial reserves and 6.15 billion tons of recoverable reserves. Objective: Due to the complex geological conditions of the thin coal seam, the plow mining method cannot be effectively popularized, and the drum mining method is difficult to be popularized and applied in small and medium-sized coal mines, so it is necessary to find other more advantageous alternative mining methods. Methods: The equipment integrates mining operations, conveying operations, and supporting operations, and is suitable for mining short and extremely thin coal seam with a height of 0.35m-0.8m and width of 2m-20m. It has the advantages of the low body of the shearer, no additional support on the working face, and small underground space. The mining efficiency of thin coal seam and very thin coal seam can be improved and the mining cost can be reduced. Results: Thin coal seam shear mining combines mining, conveying, and supporting processes together and has the advantages of a low fuselage, no extra support required for the working face, and feasibility in a small underground space. Conclusion: The summarized mining method can improve the mining efficiency of thin and extremely thin coal seams, reduce mining costs, and incorporate green mining practices, which take both mining economy and safety into account.


2017 ◽  
Vol 62 (4) ◽  
pp. 871-891 ◽  
Author(s):  
Tu Hong-Sheng ◽  
Tu Shi-Hao ◽  
Zhang Cun ◽  
Zhang Lei ◽  
Zhang Xiao-Gang

Abstract A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a “voussoir beam” structure in the strata’s dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof’s behaviors during the mining of a steep seam.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hengyi Jia

To investigate the deformation characteristics of protected coal seams, the numerical simulation of the mining of an upper protective coal seam was carried out in the present study. Based on the basic definition of strain, a method for the extraction of the strain data of the protected coal seam was proposed, and the strain distribution characteristics were obtained. It was found that the x -direction strain is mainly distributed near the coal pillars on both sides and inside the goaf, the y -direction strain is mainly distributed at the working face, the initial mining line, and inside the goaf, and the z -direction strain is mainly distributed at the working face, the initial mining line, the coal pillars on both sides, and inside the goaf. The distribution characteristics and the value of volumetric strain were found to be basically consistent with the z -direction strain. As the working face advances, the protected coal seam undergoes compression and damage expansion in turn. The turning point between compression and damage expansion is approximately 15 m in front of the working face. The variation law of gas drainage in the boreholes of the protected coal seam is closely related to the distribution characteristics of volumetric strain. The results of this research are of great significance for the comprehensive investigation of the effects of pressure relief and the permeability enhancement of protective coal seam mining.


Author(s):  
Kai Huang ◽  
Long Xu ◽  
Fusheng Zha ◽  
Zhitang Lu ◽  
Jiwen Wu ◽  
...  

The complicated geological conditions, including the Fault Sun, in East No. 2 mining sub-area of the Longdong coal mine will influence the stability of strata during mining, leading to serious geological hazards. To circumvent this issue, a similarity simulation experiment was designed and performed in this study, in which the failure characteristics and evolution of displacement and stress within the strata were investigated, and the optimum width of a waterproof coal pillar was determined. The results showed that, as the working face progressed, the coal seam roof gradually deformed, from initial caving of the immediate roof to complete movement and curved subsidence of the entire roof. Significant changes in displacement and stress within the coal seam roof were recorded, and these increased during continuous mining activity. Displacement and stress difference on either side of the fault gradually increased and reached remarkable values with increase in mining distance. On the basis of the experiment results, water inrush is believed to be caused by the interaction between mining and the fault, and, as calculated from parameters collected in field investigations, a waterproof coal pillar of 50 m width should be established to prevent Fault Sun activation, thereby reducing the risk of water inrush from neighbouring aquifers.


Sign in / Sign up

Export Citation Format

Share Document