scholarly journals Experimental and Theoretical Investigation of Overburden Failure Law of Fully Mechanized Work Face in Steep Coal Seam

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ze Liao ◽  
Tao Feng ◽  
Weijian Yu ◽  
Genshui Wu ◽  
Ke Li ◽  
...  

In this study, both theoretical analysis and similar simulation experiment are employed to investigate the overburden failure law of fully mechanized face in the steep coal seam. By establishing the mechanical model of inclined rock beam, the deflection equation of overlying strata beam is obtained. Based on the geological conditions of Xiangyong coal mine in Hunan Province of China, the laws of roof deformation and failure in steep coal seam are obtained by similar simulation experiments. The results showed that the roof deformation of the goaf is relatively large after the working face advances along the strike, and the deformation mainly occurs in the upper roof of the goaf. The backward gangue in the immediate roof fills the lower part of the goaf, which plays a supporting role in the lower part of the roof and floor. The roof fracture of goaf is located in the middle and upper parts of the working face, which is consistent with the results derived from the mechanical model. After the roof fracture, a “trapezoid” bending fracture area and the secondary stability system area is formed, which is composed of four areas: the lower falling and filling support area, the upper strata bending fracture area, the fracture extension area, and the roof bending sinking area.

2017 ◽  
Vol 62 (4) ◽  
pp. 871-891 ◽  
Author(s):  
Tu Hong-Sheng ◽  
Tu Shi-Hao ◽  
Zhang Cun ◽  
Zhang Lei ◽  
Zhang Xiao-Gang

Abstract A steep seam similar simulation system was developed based on the geological conditions of a steep coal seam in the Xintie Coal Mine. Basing on similar simulation, together with theoretical analysis and field measurement, an in-depth study was conducted to characterize the fracture and stability of the roof of steep working face and calculate the width of the region backfilled with gangue in the goaf. The results showed that, as mining progressed, the immediate roof of the steep face fell upon the goaf and backfilled its lower part due to gravity. As a result, the roof in the lower part had higher stability than the roof in the upper part of the working face. The deformation and fracture of main roof mainly occurred in the upper part of the working face; the fractured main roof then formed a “voussoir beam” structure in the strata’s dip direction, which was subjected to the slip- and deformation-induced instability. The stability analysis indicated that, when the dip angle increased, the rock masses had greater capacity to withstand slip-induced instability but smaller capacity to withstand deformation-induced instability. Finally, the field measurement of the forces exerted on the hydraulic supports proved the characteristics of the roof’s behaviors during the mining of a steep seam.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hong-sheng Tu ◽  
Shi-hao Tu ◽  
De-fu Zhu ◽  
Ding-yi Hao ◽  
Kai-jun Miao

After coal is extracted from a working face in a steep coal seam (SCS), the immediate roof tends to cave in and refill the lower part of the goaf. Based on the geological conditions of a work area in a SCS and the characteristics of roof caving, this study proposed a formula for the width of the backfill in the goaf and analyzed the main factors influencing it. Based on the small-deflection theory for elastic thin plates, a working face model was created for the mechanical analysis of the main roof above a SCS before the roof fractures for the first time. Then, a roof deflection equation was derived for the estimation roof deformation under the action of both the load from overlying strata and the support provided by the backfill in the goaf. The theoretical analysis combined with the actual operational parameters at the Zuoqipian working face in #49 seam of Xintie Coal Mine shows that the maximum roof deflection is around 0.8 m and occurs at a location 39 m from the upper end of the working face. Fractures will first develop in the upper sections of the frontal and rear walls of the face and the middle of the upper suspended roof due to tension or shearing and ultimately form an E-shaped pattern. The measured support pressure and the roof deformation obtained by theoretical analysis show a similar distribution pattern, indirectly confirming the accuracy of the theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ma Xingen ◽  
He Manchao ◽  
Wang Yajun ◽  
Zhang Yong ◽  
Zhang Jiabin ◽  
...  

The retracement channel roof cutting (RCRC) technology can change the overburden structure actively by cutting off the roof of channel along the direction of working face tendency and make use of the gangue collapsing from roof cutting range to fill the goaf and weaken the mining pressure during the retracement process of working face. In order to solve the problems of high stress in surrounding rock and serious deformation of retracement channel in Halagou coal mine, it is the first time that the pressure releasing test is carried out on the 12201 working face by the method of the directional presplitting roof cutting in retracement channel. First, according to statics theory and energy theory, the stress state of hydraulic support and roof deformation mechanism of retracement channel are analyzed. Then the roof cutting design of retracement channel is determined according to the geological conditions of 12201 working face, and the cutting effect is analyzed by numerical simulation. Finally, the field test is carried out on the 12201 working face to verify the effect of pressure releasing by roof cutting. The result shows that, with the roof cutting design including the roof cutting height being 8m and roof cutting angle being 45°, the roof subsidence of the 12201 working face retracement channel in Halagou mine is reduced to 132.5mm, and the hydraulic support resistance is maintained at 1361KN. And there is no hydraulic support crushed; the deformation of the retracement channel is also small; namely, the effect of roof cutting for pressure releasing is obvious.


2020 ◽  
Vol 24 (1) ◽  
pp. 45-54 ◽  
Author(s):  
Pu Wang ◽  
Lishuai Jiang ◽  
Changqing Ma ◽  
Anying Yuan

The study of evolution laws of the mining-induced stress in floor strata affected by overhead mining is extremely important with respect to the stability and support of a floor roadway. Based on the geological conditions of the drainage roadway in the 10th district in a coalmine, a mechanical model of a working face for overhead mining over the roadway is established, and the laws influencing mining stress on the roadway in different layers are obtained. The evolution of mining stress in floor with different horizontal distances between the working face and the floor roadway that is defined as LD are examined by utilizing UDEC numerical simulation, and the stability of roadway is analyzed. The results of the numerical simulation are verified via on-site tests of the deformation of the surrounding rocks and bolts pull-out from the drainage roadway. The results indicate that the mining stress in floor is high, which decreases slowly within a depth of less than 40 m where the floor roadway is significantly affected. The mining stress in the floor increases gradually, and the effect of the mining on the roadway is particularly evident within 0 m ≤ LD ≤ 40 m. Although the floor roadway is in a stress-relaxed state, the worst stability of the surrounding rocks is observed during the range -20 m ≤ LD < 0 m, in which the negative value indicates that the working face has passed the roadway. The roadway is affected by the recovery of the abutment stress in the goaf when -60 m ≤ LD <20 m, and thus it is important to focus on the strengthening support. The results may provide a scientific basis for establishing a reasonable location and support of roadways under similar conditions.


2020 ◽  
Author(s):  
Zizheng Zhang ◽  
Jianbiao Bai ◽  
Xianyang Yu ◽  
Weijian Yu ◽  
Min Deng ◽  
...  

Abstract Gob-side entry retained with roadside filling (GER-RF) plays a key role in achieving coal mining without pillar and improving the coal resource recovery rate. Since there are few reports on the cyclic filling length of GER-RF, a method based on the stress difference method is proposed to determine the cyclic filling length of GER-RF. Firstly, a stability analysis mechanics model of the immediate roof above roadside filling area in GER was established, then the relationship between the roof stress distribution and the unsupported roof length was obtained by the stress difference method. According to the roof stability above roadside filling area based on the relationship between the roof stress and its tensile strength, the maximum unsupported roof length and rational cyclic filling length of GER-RF. Combined with the geological conditions of the 1103 thin coal seam working face of Heilong Coal Mine and the geological conditions of the 1301 thick coal seam working face of Licun Coal Mine, this suggested method was applied to determine that the rational cyclic filling lengths of GER-RF were 2.4 m and 3.2 m, respectively. Field trial tests show that the suggested method can effectively control the surrounding rock deformation along with rational road-in support and roadside support, and improve the filling and construction speed.


2017 ◽  
Vol 36 (5) ◽  
pp. 1265-1278 ◽  
Author(s):  
Wei Zhang ◽  
Dongsheng Zhang ◽  
Dahong Qi ◽  
Wenmin Hu ◽  
Ziming He ◽  
...  

The primary problem needed to be solved in mining close coal seams is to understand quantitatively the floor failure depth of the upper coal seam. In this study, according to the mining and geological conditions of close coal seams (#10 and #11 coal seams) in the Second Mining Zone of Caocun Coal Mine, the mechanical model of floor failure of the upper coal seam was built. Calculation results show that the advanced abutment pressure caused by the mining of the upper coal seam, resulted in the floor failure depth with a maximum of 26.1 m, which is 2.8 times of the distance between two coal seams. On this basis, the mechanical model of the remaining protective coal pillar was established and the stress distribution status under the remaining protective coal pillar in the 10# coal seam was then theoretically analysed. Analysis results show that stress distribution under the remaining protective coal pillar was significantly heterogeneous. It was also determined that the interior staggering distance should be at least 4.6 m to arrange the gateways of the #209 island coalface in the lower coal seam. Taken into account a certain safety coefficient (1.6–1.7), as well as reducing the loss of coal resources, the reasonable interior staggering distance was finally determined as 7.5 m. Finally, a novel method using radon was initially proposed to detect the floor failure depth of the upper coal seam in mining close coal seams, which could overcome deficiencies of current research methods.


2012 ◽  
Vol 524-527 ◽  
pp. 466-470
Author(s):  
Jun Ling Hou ◽  
Yan Sun

Based on the geological conditions and specific mining technology conditions of the 11014 mining face of Panbei mine in HuaiNan mining group ,using the FLAC3D software, simulate the stress distribution rule and disruption field distribution rule of surrounding rock of Fully-Mechanized face enhancing the upper limit for coal mining along the tendency and trend of coal seam by different mining speed of 6 m/d, 4 m/d and 2 m/d. draw the conclusion that enhancing the mining speed can alleviate the pressure of the working face ,improve the working face mechanical environment,and reduce the extent of the failure field.It provides the theory basis and reference for Fully-Mechanized face enhancing the upper limit for coal mining under similar conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Zhi-long He ◽  
Cai-ping Lu ◽  
Xiu-feng Zhang ◽  
Chao Wang ◽  
Bao-qi Wang ◽  
...  

Irregular coal pillars are often reserved in the upper coal seam in multiseam mining due to the limitation of geological conditions and mining methods. Diffused and transmitted stress in the pillars will form the stress concentrated areas in the lower coal seam and will increase the risk of rockburst. Based on the upper irregular pillars and fault encountered in the 7301 working face of the Zhaolou coal mine, this paper studies the evolution of stress and energy when the working face passed through the area affected by pillars. The adopted methods include numerical simulations and field monitoring. The change in stress concentration factor and stress gradient because of the mining activities in lower coal seam was analyzed by numerical simulation, indicating that the stress gradient reaches a peak when the working face is closed to the area under the edge and junction of pillars, which has the high risk of inducing rockburst. The sources’ location, variation rule of microseismic (MS) total energy and events, frequency spectrum distributions, and source parameters are discussed, respectively, based on the field monitoring data. The main conclusions were obtained as follows: (1) The total energy and event counts reach the peak when working face is close to the area under the edge and the junction of pillars. (2) The dominant frequency transfers from high frequency to low frequency, the stress drop reaches the peak value, the energy index decreases sharply, and the cumulative apparent volume increases sharply, which all are obvious precursory characteristics before rockburst.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xingen Ma ◽  
Manchao He ◽  
Xuewei Sun ◽  
Jianfeng Li ◽  
Gang He ◽  
...  

Gob-side entry retaining technology with roof cutting (GERRC) has been widely used in flat and near-flat coal seam conditions, but its application under inclined coal seam is still very deficient. In order to further improve the application system of GERRC and overcome the application difficulties under special geological conditions, this paper takes the 43073 working face of Yixin coal mine as an example to research the GERRC with upper roadway under gently inclined thick coal seam. Firstly, the difficulties in the upper entry retaining with inclined coal seam are analyzed and the corresponding key technologies and system designs are put forward. Subsequently, the roof cutting and upper entry retaining are designed in detail according to geological conditions of test working face, and the roof cutting and pressure releasing effect is analyzed by numerical simulation to expound the stress distribution and pressure releasing mechanism of surrounding rock. Finally, the upper entry retaining field test is carried out to verify the feasibility and applicability of the technology and related designs. Through field monitoring, it is found that the weighting step increases significantly, the weighting strength decreases effectively on the roof cutting side, and the pressure relief effect is obvious. Meanwhile, the maximum roof to floor convergence is 361 mm and the maximum shrinkage of both sides is 280 mm, so the retained entry can meet the reuse requirement of adjacent working face.


Sign in / Sign up

Export Citation Format

Share Document