scholarly journals Dendrimers: A New Race of Pharmaceutical Nanocarriers

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pooja Mittal ◽  
Anjali Saharan ◽  
Ravinder Verma ◽  
Farag M. A. Altalbawy ◽  
Mohammed A. Alfaidi ◽  
...  

Dendrimers are nanosized, symmetrical molecules in which a small atom or group of atoms is surrounded by the symmetric branches known as dendrons. The structure of dendrimers possesses the greatest impact on their physical and chemical properties. They grow outwards from the core-shell which further reacts with monomers having one reactive or two dormant molecules. Dendrimers’ unique characteristics such as hyperbranching, well-defined spherical structure, and high compatibility with the biological systems are responsible for their wide range of applications including medical and biomedical areas. Particularly, the dendrimers’ three-dimensional structure can incorporate a wide variety of drugs to form biologically active drug conjugates. In this review, we focus on the synthesis, mechanism of drug encapsulations in dendrimers, and their wide applications in drug delivery.

2013 ◽  
Vol 1505 ◽  
Author(s):  
Kexin Chen

ABSTRACTGraphene, a monolayer of sp2-bonded carbon atoms, has been attracting worldwide interests because of its unique two-dimensional structure, various fascinating properties and a wide range of intriguing potential applications. The graphene research is very active in China and has been developing rapidly in the past few years, which covers nearly all the areas related to graphene including theories, synthesis, physical and chemical properties, and applications. Over 100 research institutions have been involved in graphene research with fast-growing project supports. In this paper, the status of graphene research in China is first discussed based on the number of publications and patents as well as the institutions involved. Then the projects and fundings from both government and companies for graphene research are briefly introduced. Finally, the highlights of graphene research in China are reviewed, which include chemical vapor deposition growth and transfer, mass production, and assembly of graphene, and its applications in energy storage, sensing, composites and solar cells.


NANO ◽  
2021 ◽  
pp. 2150050
Author(s):  
Zhaoyu Han ◽  
Sen Li ◽  
Shaoxian Yin ◽  
Zhi-Qin Wang ◽  
Yanfei Cai ◽  
...  

Being the newest member of the 2D materials family, 2D-nanosheet possesses many distinctive physical and chemical properties resulting in a wide range of potential applications. Recently, it was discovered that 2D COF can adsorb single-stranded DNA (ss-DNA) efficiently as well as usefully to quench fluorophores. These properties make it possible to prepare DNA-based optical biosensors using 2D COF. While practical analytical applications are being demonstrated, the fundamental understanding of binding between 2D COF and DNA in solution received relatively less attention. In this work, we carried out a systematic study to understand the adsorption and desorption kinetic, mechanism, and influencing factors of ss-DNA on the surface of 2D COF. We demonstrated that shorter DNAs are adsorbed more rapidly and bind more tightly to the surface of 2D COF. The adsorption is favored by a higher pH. The different buffer types also can affect the adsorption. In Tris-HCl solution, the adsorption reached highest efficiency. By adding the complementary DNA (cDNA), desorption of the absorbed DNA on 2D COF can be achieved. Further, desorption efficiency can also be exchanged by various surfactant in solution. These findings are important for further understanding of the interactions between DNA and COFs and for the optimization of DNA and COF-based devices and sensors.


2021 ◽  
Vol 9 ◽  
Author(s):  
O. Yablonskaya ◽  
E. Buravleva ◽  
K. Novikov ◽  
V. Voeikov

Hydrated fullerene C60 (HyFn) is a supramolecular object in which the nanosized fullerene molecule is enclosed in a multilayer shell of water molecules. Despite the fact that fullerene C60 is chemically rather inert, aqueous solutions of HyFn exhibit a wide spectrum of biological activity in particular in low and ultra-low concentrations. Thus, physical and chemical properties of aqueous solutions of HyFn in a wide range of its dilutions are of interest. Here we compared some physical and chemical properties of aqueous systems prepared by successive 100-fold dilutions of HyFn (10–7 M) with deionized water, with their intensive shaking at each stage up to the calculated HyFn concentration of 10–31 M and of the corresponding “dilutions” of deionized water prepared in the same manner (controls). We studied the character of рН changes in dilutions when titrating them with HCl and NaOH. It turned out that HyFn dilutions had significantly higher buffering capacity against acidification with HCl than control water “dilutions.” At the highest acidity reached pH in all HyFn dilutions was almost 0.3 units higher than in the respective controls. Average buffering capacity of HyFn dilutions and water controls when titrated with NaOH did not differ. However, differences in buffering capacity could be seen between consecutive dilutions of HyFn at their titration either with NaOH or with HCl. Most prominent differences were observed between consecutive HyFn dilutions in the range of calculated concentrations 10–17–10–31 M titrated with NaOH while no significant differences in pH between equivalent “dilutions” of control water were observed. Similar though less prominent variations in buffering capacity between consecutive HyFn dilutions titrated with HCl were also noticed. Thus, titration with an acid and especially with an alkali made it possible to reveal differences between individual dilutions of HyFn, as well as differences between HyFn dilutions and corresponding dilutions of water. These features may be due to complexity in the structural properties of aqueous systems, which, supposedly, can arise due to the emergence of heterogenous aqueous regions (“clouds”) in the course of their dilutions with intensive mixing at each stage. In order to find out if such heterogeneity is a characteristic for HyFn dilutions we used the method of drying microsphere-containing droplets, whose aqueous base were either HyFn dilutions in the range of calculated HyFn concentration 10–7–10–31 M or respective water controls. It was found that a significant part of HyFn dilutions is characterized by mesoscopic heterogeneity. It showed up by the tendency of microspheres to concentrate in a specific way resembling ornaments once the droplets had dried. As the degree of HyFn dilution increased, the number of dried droplets with an ornament-like microsphere distribution increased. Same was also observed in water control drops. However, for the dilutions of HyFn equivalent to concentrations 10–19–10–31 M the percentage of complexly structured dried up droplets reached 60–80%, while for dried out drops of respective water controls it did not exceed 15–20%. Thus, the physicochemical properties of high dilutions of hydrated fullerene differ not only from each other dependently on the dilution level, but also from those of high dilutions of water, which can be explained by the structuredness and heterogeneity of these aqueous systems. Therefore, upon dilution process the properties of the solutions change according to complex and non-linear laws so that final dilutions cannot be identical in their properties and features to those of the initial solutions (before dilutions process) and to the untreated water. Dilution process, in view of the aforementioned, should not be underestimated when analyzing properties of the solutions, having shown to be able to affect dramatically properties of the solutions.


2018 ◽  
Vol 44 ◽  
pp. 00197 ◽  
Author(s):  
Katarzyna Wystalska ◽  
Krystyna Malińska ◽  
Renata Włodarczyk ◽  
Olga Chajczyk

Pyrolysis of biomass residues from agriculture and food processing industry allows production of biochars with diverse physical and chemical properties for a wide range of applications in agriculture and environmental protection. Biochars produced from pelletized sunflower husks through slow pyrolysis in the range of temperatures (480–580°C) showed total carbon of 70.53%–81.96%, total nitrogen of 1.2%, alkaline pH (9.37–10.32), low surface area (0.93–2.91 m2 g-1) and porosity of 13.23–15.43%. Higher pyrolysis temperatures resulted in lower biochar yields. With the increase in temperature the content of organic matter, nitrogen, Ca and Mg decreased whereas the increase in temperature resulted in higher contents of total carbon and phosphorus. Produced biochars showed potential for agricultural applications.


2020 ◽  
Vol 21 (20) ◽  
pp. 7577
Author(s):  
Noriyuki Uchida ◽  
Takahiro Muraoka

Peptide-based fibrous supramolecular assemblies represent an emerging class of biomaterials that can realize various bioactivities and structures. Recently, a variety of peptide fibers with attractive functions have been designed together with the discovery of many peptide-based self-assembly units. Cross-linking of the peptide fibers is a key strategy to improve the functions of these materials. The cross-linking of peptide fibers forming three-dimensional networks in a dispersion can lead to changes in physical and chemical properties. Hydrogelation is a typical change caused by cross-linking, which makes it applicable to biomaterials such as cell scaffold materials. Cross-linking methods, which have been conventionally developed using water-soluble covalent polymers, are also useful in supramolecular peptide fibers. In the case of peptide fibers, unique cross-linking strategies can be designed by taking advantage of the functions of amino acids. This review focuses on the current progress in the design of cross-linked peptide fibers and their applications.


2013 ◽  
Vol 543 ◽  
pp. 72-75
Author(s):  
Balakrishnan Karthikeyan ◽  
Marimuthu Murugavelu

The emergence of nanoparticles (NPs) has opened new opportunities in analytical chemistry [. These NPs exhibit different properties and functionalities when compared to monometallic particles. In particular, they show enhanced selectivity and reactivity when used as catalysts and sensors [2-. The NPs have large surface area, high surface free energy, good biocompatibility and suitability, and it has been used in constructing electrochemical biosensors [7, . The fascinating physical and chemical properties of NPs offer excellent prospects for a wide range of bio sensing applications [ . Uric acid (UA) is the principal final product of purine metabolism in the human body [1. It has been shown that extreme abnormalities of UA levels are symptoms of several diseases (e.g. gout, hyper uricaemia and LeschNyhan syndrome)[11,1.In general, electro active UA can be irreversibly oxidized in aqueous solution and the major product is allantoin [1. In continuation of our interest with the bimetal nanoparticle (BNP) sensing here in this study, we employed Ag/Pt BNPs for detecting of UA.


1987 ◽  
Vol 105 ◽  
Author(s):  
Takuji Goda ◽  
Hirotsugu Nagayama ◽  
Akihiro Hishinuma ◽  
Hideo Kawahara

AbstractA new coating process of silicon dioxide (SiO2) “LPD” process, has been developed recently. Silicon dioxide (SiO2) film can be deposited on any substrate at the room temperature by immersing in hexafluorosilicic acid (H2SiF6).In this study, physical and chemical properties of the “LPD- SiO2” film were investigated by using XPS, IR, ellipsometry, and etch rate measurement. The properties of this film deposited at the room temperature were almost the same as those of plasma CVD. The “LPD-SiO2” film without annealing was contained traces of F and OH. However, by annealing, F and OH were rapidly evaporated from the film and the film was getting densified.As the “LPD-SiO2” film deposited at the room temperature showed very good results of chemical etching rate and of step coverage, it is expected that it is possible to use this “LPD- SiO2” film in the wide range of industrial area.


1969 ◽  
Vol 52 (4) ◽  
pp. 269-280 ◽  
Author(s):  
L. C. Liu ◽  
H. Cibes Viadé

Thirteen soils representing a wide range of physical and chemical properties were used in this study. Four herbicides including Atrazine, Ametryne, Prometryne, and Diuron were applied at a concentration series from 0.5 to 32 p.p.m. to each soil, with the exception of Caño Tiburones soil. Kanota oat (Avena sativa L.) was chosen as an indicator plant. ED50  values were obtained for the various soil types. The result indicated that ED50  values varied greatly with different soil types. Simple, partial, and multiple correlations were made among ED50  values and different soil properties. It was found that the organic matter was the major soil property which contributed chiefly to the phytotoxicity of herbicides. A theoretical relationship between percent soil organic matter and p.p.m.w. of herbicides required for 50-percent fresh-weight reduction of oat was obtained for herbicide dosage-prediction purpose.


2020 ◽  
Vol 27 (11) ◽  
pp. 2030001
Author(s):  
ZHANG YANCONG ◽  
DOU LINBO ◽  
MA NING ◽  
WU FUHUA ◽  
NIU JINCHENG

Electrospun technology is a simple and flexible method for preparation of nanofiber materials with unique physical and chemical properties. The nanofiber diameter is adjustable from several nanometers to few microns during the preparation. Electrospun nanofiber materials are easy to be assembled into different shapes of three-dimensional structures. These materials exhibit high porosity and surface area and can simulate the network structures of collagen fibers in a natural extracellular matrix, thereby providing a growth microenvironment for tissue cells. Electrospun nanofibers therefore have extensive application prospects in the biomedicine field, including in aerospace, filtration, biomedical applications, and biotechnology. Nanotechnology has the potential to revolutionize many fields, such as surface microscopy, silicon fabrication, biochemistry, molecular biology, physical chemistry, and computational engineering, while the advent of nanofibers has increased the understanding of nanotechnology among academia, industry, and the general public. This paper mainly introduces the application of nanofiber materials in tissue engineering, drug release, wound dressing, and other biomedicine fields.


The Copley Medal is awarded to Sir Derek Barton, F. R. S. Among Sir Derek Barton's many distinguished contributions to organic chemistry, outstanding is his conception and development of conformational analysis, which represents the most important advance in this century in the understanding of the stereochemistry of organic compounds, and for which he received a Nobel Prize in 1969. Originally devised for cyclohexane derivatives, the concept was rapidly extended to other ring systems, and is of major importance in interpretation of the physical and chemical properties of a wide range of natural products. Sir Derek has also contributed greatly to the understanding of biosynthesis, and in many cases demonstrated the validity of his hypotheses by labelling experiments in vivo . In particular, his ideas on the nature of phenolic coupling, involving one-electron oxidative processes, formed the basis of a very large number of successful biosynthetic studies, especially in the alkaloid field. He has also applied his ideas to the simulation of natural biosynthetic sequences, the one-step synthesis of the complex usnic acid from a simple monocyclic precursor providing one of the most striking examples.


Sign in / Sign up

Export Citation Format

Share Document