scholarly journals Effect of Gas on Burst Proneness and Energy Dissipation of Loaded Coal: An Experimental Study Using a Novel Gas-Solid Coupling Loading Apparatus

2021 ◽  
Vol 2021 ◽  
pp. 1-21
Author(s):  
Zuguang Wang ◽  
Huamin Li ◽  
Shen Wang ◽  
Baobin Gao ◽  
Wen Wang

Deep coal mining is seriously affected by a combined dynamic disaster of rock burst and coal and gas outburst, but the influence mechanism of gas on this combined dynamic disaster is still not very clear, which is significantly different from the single type disasters. In this study, to explore the effect of gas on the coal-rock burst, a novel gas-solid coupling loading apparatus is designed to realize gas adsorption of coal sample with burst proneness and provide uniaxial loading environment under different gas pressure. A series of uniaxial compression tests of gas-containing coal with different gas pressure is carried out, and the energy dissipation process is monitored by an acoustic emission (AE) system. Results show that the macroscopic volume strain of the coal sample increases as gas adsorption and gas pressure increase under constant uniaxial loading pressure. Gas has the ability to expand the pores and natural fractures in coal sample by mechanical and physicochemical effects, which leads to a degradation in microstructure integrity of coal sample. With the increase of gas pressure, both the macrouniaxial compression strength (UCS) and elastic modulus show a downward trend; the UCS and elastic modulus of coal samples with 2 MPa gas pressure reduce by 58.78% and 48.82%, respectively, compared to those of the original coal samples. The main reason is that gas changes the pore-fissure structure and the mesoscopic stress environment inside the coal sample. Owing to the gas, the accumulated elastic energy of the gas-containing coal samples before failure reduces significantly, whereas the energy dissipated during loading increases, and the energy release process in the postpeak stage is smoother, indicating the participation of gas weakens the burst proneness of the coal sample. This study is of important scientific value for revealing the mechanism of combined dynamic disaster and the critical occurrence conditions of coal-rock burst and coal and gas outburst.

2022 ◽  
pp. 014459872110731
Author(s):  
Jun Liu ◽  
Yanzhao Wei ◽  
Wei Wang ◽  
Luwei Zhang ◽  
Jinqi Wu

To investigate the characteristics of gas pressure changes during the freezing of gas-containing composite coal, an experimental device for determining the freezing response characteristics of gas-containing coal was independently designed. Coal samples with different firmness coefficients from the No. 3 coal seam in Yuxi Coal Mine in Jincheng, Shanxi Province, were selected to determine the different freezing response characteristics. The gas pressure evolved under different temperatures (-10 °C-15 °C-20 °C-25 °C-30 °C) and different adsorption equilibrium pressures (1.0 MPa, 1.5 MPa, 2.0 MPa). The research results reveal that, during the freezing process of the gas-containing coal sample, the gas pressure in the coal sample tank changed as a monotonously decreasing function and underwent three stages: rapid decline, decline, and slow decline. The relationship between the gas pressure of the coal sample tank and the freezing time is described by a power function. Low temperatures promoted gas adsorption. As the freezing temperature decreased, the decrease of gas pressure in the coal sample tank became faster. During the freezing process, the adsorption capacity of soft coal was larger, and the gas pressure of soft coal was lower.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Xue-bo Zhang ◽  
Wen-yuan Wang ◽  
Ming Yang ◽  
Hang-hang Cai ◽  
Jia-jia Liu ◽  
...  

To explore the mechanical failure and permeability characteristics of porous gas-bearing coal under triaxial stress, the triaxial compression experiment was carried out for porous and conventional gas-bearing coal samples based on the triaxial creep-seepage experiment system and sound emission signal acquisition system. Acoustic emission testing was carried out at the same time of loading failure. The experimental results showed that (1) under fixed gas pressure but changing confining pressure, the porous gas-bearing coal sample had higher peak strength and elastic modulus but lower peak strain; under changing gas pressure but fixed confining pressure, the porous gas-bearing coal sample had lower peak strength and peak strain but higher elastic modulus. When either confining pressure or gas pressure was changed, the mechanical properties of the two kinds of gas-bearing coal samples showed a good consistency, but the mechanical parameters differed greatly, with the peak strength, peak strain, and elastic modulus of porous coal samples are reduced by 1/4, 2/3, and 3/4, respectively. (2) When either the confining pressure or gas pressure was changed, the permeability of the porous gas-bearing coal sample was larger than that of the conventional gas-bearing coal sample. However, the change rules of permeability characteristics of the two were basically the same, except that there was a large difference in permeability value that the porous gas-bearing coal sample increases nearly twice as much as that of the conventional gas-bearing coal sample. (3) In the whole stress-strain process, the acoustic emission characteristics of the porous gas-bearing coal sample differed significantly from those of the conventional gas-bearing coal sample. The maximum ringdown count of the porous gas-bearing coal sample can be reduced by one-third at most, the maximum energy can be reduced by nearly half at most, and the maximum amplitude changes little with only 1–3 dB reduction. The research results have important guiding significance for the prediction of failure and instability of coal tunnel and the development of relevant protective techniques.


2012 ◽  
Vol 616-618 ◽  
pp. 190-196
Author(s):  
Deng Ke Wang ◽  
Jian Ping Wei ◽  
Le Wei ◽  
Heng Jie Qin

A large number of laboratory experiments on the gas seepage characteristics by the self-developed gas-bearing coal triaxial compression experimental system and conducts the comparative analysis of the similarities and differences of the permeability among CO2, CH4 and N2. The results show that given the condition of constant gas pressure, the permeability of the coal sample decreases with the increase of the confining pressure; under the constant confining pressure, the permeability of the coal sample decreases with the increase of the gas pressure; gases of different adsorbabilities have different permeabilities. The stronger the gas adsorption is, the worse its permeability will be; in the axial loading case, the permeabilities of different gases all reduce firstly and increase afterward, showing the generally V-shaped variation law. The results are of certain theoretical values on the in-depth understanding of the migration law of the gas in coal seams.


2016 ◽  
Vol 34 (6) ◽  
pp. 1737-1748 ◽  
Author(s):  
Yi Xue ◽  
Feng Gao ◽  
Teng Teng ◽  
Yan Xing

2021 ◽  
pp. 014459872110310
Author(s):  
Ming Yang ◽  
Gaini Jia ◽  
Jianliang Gao ◽  
Jiajia Liu ◽  
Xuebo Zhang ◽  
...  

To deeply study the variation characteristics of the gas content in the process of gas adsorption for coal samples under different gas pressures and confining pressures, low-field nuclear magnetic resonance technology was used to carry out experimental research on the gas adsorption of coal. The relationship between the T2 spectrum amplitude integral and the gas quantity was analyzed. The results show the following: (1) When the samples were inflated for 11 h at each gas pressure point (0.31, 0.74, 1.11, and 1.46 MPa), after ∼5 h of adsorption, the amount of adsorbed gas exceeded 85.0% of the total adsorption capacity; additionally, as the adsorption time increased, the amount of adsorbed gas gradually tended to stabilize. When the gas pressure was >1 MPa, the amount of adsorbed gas exceeded 90.0% of the total adsorption capacity; Higher the pressure of aerated gas, greater the gas pressure gradient or concentration gradient on the surface of the coal sample and the greater the driving force for gas molecules to seep or diffuse into the coal sample. (2) When the samples were inflated for 11 h at each confining pressure point (3, 4, 5, and 7 MPa), the adsorbed gas increased by ∼85.0% of the total adsorbed gas in the first 5 h. When the pressure was <5 MPa, the amount of adsorbed gas exceeded 85.0% of the total amount of adsorption; that is, the increase in adsorbed gas was the largest at ∼5 h in the adsorption process for the columnar coal sample under different confining pressures, and the increase was ∼5.0% from 7–11 h. When the large pores in the coal sample closed, the amount of gas that seeped into the deep part of the coal sample within the same aeration time was reduced.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Guowei Dong ◽  
Xuanming Liang ◽  
Zhen Wang

Since the precise identification and prediction and early warning of compound coal-rock dynamic disaster remain difficult, a new coal characterisation and prediction method for compound coal-rock dynamic disasters was described based on theoretical analysis, laboratory experiment, field sampling, mathematical treatment, and industrial testing. The results implied that the physicomechanical properties of coal in a compound coal-rock dynamic disaster are between those pertinent to a typical rock burst and a coal-gas outburst, i.e., with high crustal stress surrounding pressure, high gas pressure, low permeability, bump proneness, and outburst risk. The predicted drilling data indicate moderate gas desorption indices. The gas desorption velocity and permeability of compound coal-rock dynamic disaster coal decrease with the increase in crustal stress, while increase and decrease with the increase in gas pressure, respectively, at the same time, and they change little with increasing temperature. Gas extraction leads to the increase in coal mass brittleness and bump proneness. Based on the unique physical-mechanical properties of compound coal-rock dynamic disaster coal, a reasonably sensitive predictive index and critical value for Donglin Coal Mine were determined.


2020 ◽  
Vol 29 (4) ◽  
pp. 2481-2493 ◽  
Author(s):  
Feng Du ◽  
Kai Wang ◽  
Xiang Zhang ◽  
Chengpeng Xin ◽  
Longyong Shu ◽  
...  

2013 ◽  
Vol 6 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Ai Chi ◽  
Li Yuwei

Coal body is a type of fractured rock mass in which lots of cleat fractures developed. Its mechanical properties vary with the parametric variation of coal rock block, face cleat and butt cleat. Based on the linear elastic theory and displacement equivalent principle and simplifying the face cleat and butt cleat as multi-bank penetrating and intermittent cracks, the model was established to calculate the elastic modulus and Poisson's ratio of coal body combined with cleat. By analyzing the model, it also obtained the influence of the parameter variation of coal rock block, face cleat and butt cleat on the elastic modulus and Poisson's ratio of the coal body. Study results showed that the connectivity rate of butt cleat and the distance between face cleats had a weak influence on elastic modulus of coal body. When the inclination of face cleat was 90°, the elastic modulus of coal body reached the maximal value and it equaled to the elastic modulus of coal rock block. When the inclination of face cleat was 0°, the elastic modulus of coal body was exclusively dependent on the elastic modulus of coal rock block, the normal stiffness of face cleat and the distance between them. When the distance between butt cleats or the connectivity rate of butt cleat was fixed, the Poisson's ratio of the coal body initially increased and then decreased with increasing of the face cleat inclination.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2303
Author(s):  
Congyu Zhong ◽  
Liwen Cao ◽  
Jishi Geng ◽  
Zhihao Jiang ◽  
Shuai Zhang

Because of its weak cementation and abundant pores and cracks, it is difficult to obtain suitable samples of tectonic coal to test its mechanical properties. Therefore, the research and development of coalbed methane drilling and mining technology are restricted. In this study, tectonic coal samples are remodeled with different particle sizes to test the mechanical parameters and loading resistivity. The research results show that the particle size and gradation of tectonic coal significantly impact its uniaxial compressive strength and elastic modulus and affect changes in resistivity. As the converted particle size increases, the uniaxial compressive strength and elastic modulus decrease first and then tend to remain unchanged. The strength of the single-particle gradation coal sample decreases from 0.867 to 0.433 MPa and the elastic modulus decreases from 59.28 to 41.63 MPa with increasing particle size. The change in resistivity of the coal sample increases with increasing particle size, and the degree of resistivity variation decreases during the coal sample failure stage. In composite-particle gradation, the proportion of fine particles in the tectonic coal sample increases from 33% to 80%. Its strength and elastic modulus increase from 0.996 to 1.31 MPa and 83.96 to 125.4 MPa, respectively, and the resistivity change degree decreases. The proportion of medium particles or coarse particles increases, and the sample strength, elastic modulus, and resistivity changes all decrease.


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Zhongzhong Liu ◽  
Hanpeng Wang ◽  
Su Wang ◽  
Yang Xue ◽  
Chong Zhang

Sign in / Sign up

Export Citation Format

Share Document