scholarly journals Vegetation Change and Its Response to Climate Change in Yunnan Province, China

2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Huaizhang Sun ◽  
Jiyan Wang ◽  
Junnan Xiong ◽  
Jinhu Bian ◽  
Huaan Jin ◽  
...  

The impact of global climate change on vegetation has become increasingly prominent over the past several decades. Understanding vegetation change and its response to climate can provide fundamental information for environmental resource management. In recent years, the arid climate and fragile ecosystem have led to great changes in vegetation in Yunnan Province, so it is very important to further study the relationship between vegetation and climate. In this study, we explored the temporal changes of normalized difference vegetation index (NDVI) in different seasons based on MOD13Q1 NDVI by the maximum value composite and then analyzed spatial distribution characteristics of vegetation using Sen’s tendency estimation, Mann–Kendall significance test, and coefficient of variation model (CV) combined with terrain factors. Finally, the concurrent and lagged effects of NDVI on climate factors in different seasons and months were discussed using the Pearson correlation coefficient. The results indicate that (1) the temporal variation of the NDVI showed that the NDVI values of different vegetation types increased at different rates, especially in growing season, spring, and autumn; (2) for spatial patterns, the NDVI, CV, and NDVI trends had strong spatial heterogeneity owning to the influence of altitudes, slopes, and aspects; and (3) the concurrent effect of vegetation on climate change indicates that the positive effect of temperature on NDVI was mainly in growing season and autumn, whereas spring NDVI was mainly influenced by precipitation. In addition, the lag effect analysis results revealed that spring precipitation has a definite inhibition effect on summer and autumn vegetation, but spring and summer temperature can promote the growth of vegetation. Meanwhile, the precipitation in the late growing season has a lag effect of 1-2 months on vegetation growth, and air temperature has a lag effect of 1 month in the middle of the growing season. Based on the above results, this study provided valuable information for ecosystem degradation and ecological environment protection in the Yunnan Province.


2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.



2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Linghui Guo ◽  
Shaohong Wu ◽  
Dongsheng Zhao ◽  
Yunhe Yin ◽  
Guoyong Leng ◽  
...  

Based on the normalized difference vegetation index (NDVI), we analyzed vegetation change of the six major biomes across Inner Mongolia at the growing season and the monthly timescales and estimated their responses to climate change between 1982 and 2006. To reduce disturbance associated with land use change, those pixels affected by land use change from the 1980s to 2000s were excluded. At the growing season scale, the NDVI increased weakly in the natural ecosystems, but strongly in cropland. Interannual variations in the growing season NDVI for forest was positively linked with potential evapotranspiration and temperature, but negatively correlated with precipitation. In contrast, it was positively correlated with precipitation, but negatively related to potential evapotranspiration for other natural biomes, particularly for desert steppe. Although monthly NDVI trends were characterized as heterogeneous, corresponding to monthly variations in climate change among biome types, warming-related NDVI at the beginning of the growing season was the main contributor to the NDVI increase during the growing season for forest, meadow steppe, and typical steppe, but it constrained the NDVI increase for desert steppe, desert, and crop. Significant one-month lagged correlations between monthly NDVI and climate variables were found, but the correlation characteristics varied greatly depending on vegetation type.



2020 ◽  
Vol 12 (24) ◽  
pp. 4035
Author(s):  
Xiaohui Zhai ◽  
Xiaolei Liang ◽  
Changzhen Yan ◽  
Xuegang Xing ◽  
Haowei Jia ◽  
...  

In recent decades, the vegetation of the Sanjiangyuan region has undergone a series of changes under the influence of climate change, and ecological restoration projects have been implemented. In this paper, we analyze the spatiotemporal dynamics of vegetation in this region using the satellite-retrieved normalized difference vegetation index (NDVI) from the global inventory modeling and mapping studies (GIMMS) and moderate resolution imaging and spectroradiometer (MODIS) datasets during the past 34 years. Specifically, the characteristics of vegetation changes were analyzed according to the stage of implementation of different ecological engineering programs. The results are as follows. (1) The vegetation in 65.6% of the study area exhibited an upward trend, and in 53.0% of the area, it displayed a large increase, which was mainly distributed in the eastern part of the study area. (2) The vegetation NDVI increased to differing degrees during stages of ecological engineering. (3) The NDVI in the western part of the Sanjiangyuan region is mainly affected by temperature, while in the northeastern part, the NDVI is affected more by precipitation. In the southern part, however, vegetation growth is affected neither by temperature nor by precipitation. On the whole region, vegetation growing is more affected by temperature than by precipitation. (4) The impacts of human activities on vegetation change are both positive and negative. In recent years, ecological engineering projects have had a positive impact on vegetation growth. This study can help us to correctly understand the impact of climate change on vegetation growth, so as to provide a scientific basis for the evaluation of regional ecological engineering effectiveness and the formulation of ecological protection policies.



2020 ◽  
Vol 12 (9) ◽  
pp. 3569 ◽  
Author(s):  
Yanji Wang ◽  
Xiangjin Shen ◽  
Ming Jiang ◽  
Xianguo Lu

Songnen Plain is a representative semi-arid marshland in China. The Songnen Plain marshes have undergone obvious loss during the past decades. In order to protect and restore wetland vegetation, it is urgent to investigate the vegetation change and its response to climate change in the Songnen Plain marshes. Based on the normalized difference vegetation index (NDVI) and climate data, we investigated the spatiotemporal change of vegetation and its relationship with temperature and precipitation in the Songnen Plain marshes. During 2000–2016, the growing season mean NDVI of the Songnen Plain marshes significantly (p < 0.01) increased at a rate of 0.06/decade. For the climate change effects on vegetation, the growing season precipitation had a significant positive effect on the growing season NDVI of marshes. In addition, this study first found asymmetric effects of daytime maximum temperature (Tmax) and nighttime minimum temperature (Tmin) on NDVI of the Songnen Plain marshes: The growing season NDVI correlated negatively with Tmax but positively with Tmin. Considering the global asymmetric warming of Tmax and Tmin, more attention should be paid to these asymmetric effects of Tmax and Tmin on the vegetation of marshes.



Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1390
Author(s):  
Zhaosheng Wang

Remote sensing vegetation index data contain important information about the effects of ozone pollution, climate change and other factors on vegetation growth. However, the absence of long-term observational data on surface ozone pollution and neglected air pollution-induced effects on vegetation growth have made it difficult to conduct in-depth studies on the long-term, large-scale ozone pollution effects on vegetation health. In this study, a multiple linear regression model was developed, based on normalized difference vegetation index (NDVI) data, ozone mass mixing ratio (OMR) data at 1000 hPa, and temperature (T), precipitation (P) and surface net radiation (SSR) data during 1982–2020 to quantitatively assess the impact of ozone pollution and climate change on vegetation growth in China on growing season. The OMR data showed an increasing trend in 99.9% of regions in China over the last 39 years, and both NDVI values showed increasing trends on a spatial basis with different ozone pollution levels. Additionally, the significant correlations between NDVI and OMR, temperature and SSR indicate that vegetation activity is closely related to ozone pollution and climate change. Ozone pollution affected 12.5% of NDVI, and climate change affected 26.7% of NDVI. Furthermore, the effects from ozone pollution and climate change on forest, shrub, grass and crop vegetation were evaluated. Notably, the impact of ozone pollution on vegetation growth was 0.47 times that of climate change, indicating that the impact of ozone pollution on vegetation growth cannot be ignored. This study not only deepens the understanding of the effects of ozone pollution and climate change on vegetation growth but also provides a research framework for the large-scale monitoring of air pollution on vegetation health using remote sensing vegetation data.



2020 ◽  
Vol 17 ◽  
pp. 1-22
Author(s):  
Binod Baniya ◽  
Qiuhong Tang ◽  
Madan Koirala ◽  
Kedar Rijal ◽  
Giri Kattel

Monitoring and attributing growing season vegetation dynamics have become crucial for maintaining the structure and function of the ecosystem. The objective of this research was to examine the spatial and temporal vegetation changes and explore their driving forces during growing season in Nepal. It also explored the variation of Normalized Difference Vegetation Index (NDVI) in different altitudes at each 100m interval. The National Oceanic and Atmospheric Administration (NOAA) NDVI, monthly temperature, precipitation and Shuttle Radar Topography Mission (SRTM) 90m Digital Elevation Model (DEM) were used. The linear regression model, Sen’s slope, Mann Kendall test and Pearson correlation between NDVI and climate, i.e., temperature and precipitation were computed. The driving forces were identified based on threshold segmentation method. Our results showed positive intensity of vegetation change. The NDVI has significantly increased at the rate of 0.001yr-1, 0.0005yr-1 and 0.002yr-1 in growing season, spring and autumn but it has insignificantly increased at the rate of 0.0003yr-1 in summer. In the meantime, growing season temperature has significantly increased with an average warming trend of 0.03&deg;Cyr-1 but precipitation decreased at the rate of 2.76 mm yr-1 during 1982-2015. The NDVI increased in 84.20% (53.08% significant) of the area. The correlation between NDVI and temperature was found positive whereas correlation with precipitation was negative. Spatially, 84.05% of the study area found positive correlation between NDVI and temperature with 25.72% significance (p<0.05) which was very less with precipitation. Our results demonstrate that NDVI was strongly correlated with temperature compared with precipitation. Beyond the climate, NDVI changes were also attributed to multi-control environments and ecological restoration in Nepal.  



2020 ◽  
Vol 7 (4) ◽  
pp. 487-506
Author(s):  
Pshtiwan Gharib Ghafur ◽  
Zhyan Sleman Hama ◽  
Khanda Saed Tofiq

In this research is conducted about the impact of climate change on walnut production in Biara Sub-district. Descriptive – analytical method was utilized to obtain the proposed objectives by using SPSS – 16. The predominant objective of this analysis is to illustrate the inevitable impact of climate change on the walnut production in 1973-2017. The results on which the study was based on are Pearson Correlation which demonstrates that there is an indirect correlation between temperature and walnut production, and an equivalent relation with precipitation. For instance, in Multiple Regression Analysis, the impact of temperature and precipitation on small walnut trees is 4%, and on medium walnut trees is 25.8%, whereas on big walnut trees it is 24.8%. Moreover, in Coefficient of Determination, the effect of temperature on small walnut trees is 3.4%, on medium and large walnut trees increase to 18.6% and 24.7% respectively. However, precipitation impact is less than 1%, except medium walnut trees is less than 6%. The apparent wide gaps between temperature and precipitation which affects production is due to low topographic elevation and the presence of 82 springs in the study area. Additionally, an increase in temperature, a decrease in precipitation and subfreezing temperatures, in other words, chill dates, in spring time, ultimately leads to an increase in hazardous insects such as stem worms and beetle. These issues could be solved through selecting different varieties of walnuts and planting at higher elevation, construct more irrigation projects and regular irrigation, in particular during drought seasons, improving agricultural facilities and importing sufficient pesticides to tackle walnut trees diseases, is also among the precautionary methods.



Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1587
Author(s):  
Xiaomeng Guo ◽  
Siqin Tong ◽  
Jinyuan Ren ◽  
Hong Ying ◽  
Yuhai Bao

Vegetation net primary productivity (NPP) is an important aspect of the global carbon cycle, and its change is closely related to climate change. This study analyzed the spatial-temporal variation of the standardized precipitation evapotranspiration index (SPEI) and NPP in the Mongolian Plateau, and investigated the effect of drought on NPP. To this end, NPP was simulated using the Carnegie-Ames-Stanford Approach (CASA) model. The results showed that from 1982 to 2014, NPP exhibited an upward trend in different seasons, and a significant increasing trend in most areas in the growing season and spring. The degree of drought also showed an increasing trend in each season. Moreover, the decrease in NPP and SPEI in Mongolia was larger than that in Inner Mongolia. Vegetation showed a positive correlation with SPEI in the growing season and summer, but a negative correlation in the other seasons. Moreover, the impact of drought on vegetation in the growing season showed a lag effect, whereas the lag response was inconspicuous during the early stages of the growing season. Different vegetation NPP responded strongly to the SPEI of the current month and the previous month.



Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.



2021 ◽  
Vol 13 (7) ◽  
pp. 1230
Author(s):  
Simeng Wang ◽  
Qihang Liu ◽  
Chang Huang

Changes in climate extremes have a profound impact on vegetation growth. In this study, we employed the Moderate Resolution Imaging Spectroradiometer (MODIS) and a recently published climate extremes dataset (HadEX3) to study the temporal and spatial evolution of vegetation cover, and its responses to climate extremes in the arid region of northwest China (ARNC). Mann-Kendall test, Anomaly analysis, Pearson correlation analysis, Time lag cross-correlation method, and Least absolute shrinkage and selection operator logistic regression (Lasso) were conducted to quantitatively analyze the response characteristics between Normalized Difference Vegetation Index (NDVI) and climate extremes from 2000 to 2018. The results showed that: (1) The vegetation in the ARNC had a fluctuating upward trend, with vegetation significantly increasing in Xinjiang Tianshan, Altai Mountain, and Tarim Basin, and decreasing in the central inland desert. (2) Temperature extremes showed an increasing trend, with extremely high-temperature events increasing and extremely low-temperature events decreasing. Precipitation extremes events also exhibited a slightly increasing trend. (3) NDVI was overall positively correlated with the climate extremes indices (CEIs), although both positive and negative correlations spatially coexisted. (4) The responses of NDVI and climate extremes showed time lag effects and spatial differences in the growing period. (5) Precipitation extremes were closely related to NDVI than temperature extremes according to Lasso modeling results. This study provides a reference for understanding vegetation variations and their response to climate extremes in arid regions.



Sign in / Sign up

Export Citation Format

Share Document