scholarly journals Antiseismic Method of Prestressed Fabricated Building Structure under Intelligent Big Data

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Zhonghong Li ◽  
Yong Huang

Compared with traditional buildings, prefabricated buildings have the advantages of simple construction technology, low construction requirements, and shorter construction time, which can generate more economic benefits for the construction industry. In order to study the seismic capacity of prestressed fabricated building structures under intelligent big data, this article takes fabricated frame structures as the research object and the reinforced walls at the nodes as the starting point to study the damage patterns and energy dissipation capabilities of different seismic waves on the structure. In order to observe the overall seismic performance, the fabricated frame structure was used. The results of the study found that the prestressed fabricated building structure has the best seismic effect when the axial compression is 0.3, and the prestressed degree is below 0.5, which meets the seismic requirements. Therefore, the prestressed degree of the prestressed fabricated building structure should be below 0.5. According to statistics on the results of structural residual deformation and steel bar deformation of buildings under different seismic waves, it can be found that the prestressed fabricated building structure has better self-recovery ability and can better respond to earthquakes with different seismic waves.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Wojciech Drozd ◽  
Agnieszka Leśniak ◽  
Sebastian Zaworski

Similarly to any other industry, the construction sector puts emphasis on innovativeness, unconventional thinking, and alternative ideas. At present, when sustainable development, ecology, and awareness of people’s impact on the environment grow in importance, low impact buildings can become an innovative alternative construction technology for the highly industrialized construction sector. The paper presents a comparative study of three walls made of available materials used locally, which can be classified as biosourced materials, in terms of construction time. The comparison of times necessary to make 1 m2 of the wall allows us to decide which building technology is more advantageous in terms of the construction duration. A shorter construction time means lower labour costs and lower expenses for construction machines. In order to obtain answers to the questions posed, the authors made extensive searches of source data on the time-consuming building works which used locally sourced materials. Reference is made to “Temporary principles of erecting clay buildings” issued by the Institute of Housing Construction in Warsaw (Poland). Three types of walls made of locally sourced materials were studied: a wall made of clay blocks insulated with mineral wool boards, a wall made of clay compacted in formwork, and one insulated with mineral wool boards and wooden frame structure filled with straw bales and cladded with fibreboards. The layers have been chosen in such a manner that heat transfer coefficient values for the studied variants are as equal as possible (0.2 W/m2 K), thus allowing a reliable comparative study.


Author(s):  
Eunchurn Park ◽  
Sang-Hyun Lee ◽  
Sung-Kyung Lee ◽  
Hee-San Chung ◽  
Kyung-Won Min

The accurate identification of the dynamic response characteristics of a building structure excited by input signals such as real earthquake or wind load is essential not only for the evaluation of the safety and serviceability of the building structure, but for the verification of an analytical model used in the seismic or wind design. In the field of system identification (SI) which constructs system matrices describing the accurate input/output relationship, it is critical that input should have enough energy to excite fundamental structural modes and a good quality of output containing structural information should be measured. In this study forced vibration testing which is important for correlating the mathematical model of a structure with the real one and for evaluating the performance of the real structure was implemented. There exist various techniques available for evaluating the seismic performance using dynamic and static measurements. In this paper, full scale forced vibration tests simulating earthquake response are implemented by using a hybrid mass damper. The finite element (FE) model of the structure was analytically constructed using ANSYS and the model was updated using the results experimentally measured by the forced vibration test. Pseudo-earthquake excitation tests showed that HMD induced floor responses coincided with the earthquake induced ones which was numerically calculated based on the updated FE model.


2011 ◽  
Vol 255-260 ◽  
pp. 644-648
Author(s):  
Yan Xia Ye ◽  
Hua Huang ◽  
Dong Wei Li

Comparative analyses of twenty-eight finite element structures with filler walls were established to study dynamic characteristics of RC frame structures under seismic waves. The results of these analyses show that filler walls have little influence on vibration modes of the structure. But as a result of soft storey in the bottom of building caused by reduction of the filler walls, vibration modes have a great influence. As the stiffness of filler wall decrease, the stiffness of soft storey decrease shapely, vibration mode curve becomes much smoother. Considering the filler wall has influence on the vibration periods of framework, the reduction factor of 0.7 should be taken. The influence of filler wall to the value of lateral drift and storey displacement angle of frame can not be ignored. The main effect factors to the dynamic characteristics of framework are included quantity, location, material of the fill wall and the selection of seismic waves.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7525
Author(s):  
Mariusz Niekurzak

The aim of the manuscript was to present the collective results of research on the profitability of using various renewable sources in Poland with the greatest development potential. In the paper, the economic parameters of various investment projects were determined and calculated, i.e., Net Capital Value (NPV), Internal Rate of Return (IRR) and the Period of Return on Invested Capital (PBT). The economic assessment of the use of RES technologies was supplemented with the assessment of environmental benefits. The ecological criterion adopted in the study was the assessment of the potential and costs of reducing greenhouse gas emissions as a result of replacing fossil fuels with renewable energy technologies. On the basis of the constructed economic model to assess the profitability of investments, it has been shown that the analyzed projects will start to bring, depending on their type and technical specification, measurable economic benefits in the form of a reduction in the amount of energy purchased on an annual basis and environmental benefits in the form of reduction of carbon dioxide emissions to the atmosphere. Moreover, the calculations show a high potential for the use of certain renewable sources in Poland, which contributes to the fulfillment of energy and emission obligations towards the EU. The analyzes and research of the Polish energy market with the use of the presented models have shown that the project is fully economically justified and will allow investors to make a rational decision on the appropriate selection of a specific renewable energy source for their investment. The presented economic models to assess the profitability of investments in renewable energy sources can be successfully used in other countries and can also be a starting point for a discussion about the direction of energy development. Due to the lack of collective, original and up-to-date research on the domestic market, the manuscript provides the reader with the necessary knowledge regarding the legitimacy of using renewable energy sources, investment and environmental profitability.


2022 ◽  
Author(s):  
Mingzhen Wang ◽  
Lin Gao ◽  
Zailin Yang

Abstract The seismic damage state of building structure can be evaluated by observing the fundamental period change of structure. Firstly, the fundamental period calculation formula that adapts to the deformation pattern and distribution mode of horizontal seismic action for reinforced concrete frame structure is derived. Secondly, the seismic damage assessment standard of building structure considering period variation is established. Then, the seismic damage assessment method of building structure is constructed. Finally, the seismic damage example is used to verify the established evaluation method. The results show that the established research method has high accuracy and good engineering practicability.


2020 ◽  
Vol 156 ◽  
pp. 05014
Author(s):  
Jafril Tanjung ◽  
Maidiawati

This study focuses on the experimental works to define the behavior of the reinforced concrete (R/C) frame model with the strengthening of the brick masonry infill by using the embedded reinforcement bars subjected to lateral reversed cyclic loads. A previous study by applying the lateral monotonic static loads showed that the embedded reinforcement bars increased the lateral capacity of the R/C frame and also delayed the failure of the brick masonry infill and R/C frame structure as well. However, in order to define its seismic capacity, a lateral reversed cyclic loading is required. The experimental works in this study were conducted by preparing and testing the 1/4 scaled-down R/C frame specimens represented the first story of the middle multi-story commonly constructed in the earthquake-prone area such as West Sumatera, Indonesia. The R/C frame specimens were two R/C frames with brick masonry infills where one of them strengthened by the embedded reinforced bars. All specimens were tested for applying the lateral reversed cyclic loads. The applied lateral load, the lateral displacement, the progressive cracks, and the failure mode of the specimens were observed and recorded during experimental works. As it was expected, the presence of the embedded reinforced bars in the brick masonry infills increases the seismic capacity and stiffness of the R/C specimens and also delayed the failure of the specimens. The experimental results in this study imply the simple strengthening method for the brick masonry infills.


Author(s):  
Trevor J. Bihl ◽  
William A. Young II ◽  
Gary R. Weckman

Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in Big Data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs is then discussed. Common pre- and post- data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business related endeavors for further reading.


Author(s):  
Trevor J. Bihl ◽  
William A. Young II ◽  
Gary R. Weckman

Despite the natural advantage humans have for recognizing and interpreting patterns, large and complex datasets, as in big data, preclude efficient human analysis. Artificial neural networks (ANNs) provide a family of pattern recognition approaches for prediction, clustering, and classification applicable to KDD with ANN model complexity ranging from simple (for small problems) to highly complex (for large issues). To provide a starting point for readers, this chapter first describes foundational concepts that relate to ANNs. A listing of commonly used ANN methods, heuristics, and criteria for initializing ANNs are then discussed. Common pre- and post-data processing methods for dimensionality reduction and data quality issues are then described. The authors then provide a tutorial example of ANN analysis. Finally, the authors list and describe applications of ANNs to specific business-related endeavors for further reading.


2019 ◽  
Vol 9 (24) ◽  
pp. 5486 ◽  
Author(s):  
Shuang Li ◽  
Jintao Zhang

The study proposes a retrofitting method with an optimum design of viscous dampers in order to improve the structural resistant capacity to earthquakes. The retrofitting method firstly uses a 2D frame model and places the viscous dampers in the structure to satisfy the performance requirements under code-specific design earthquake intensities and then performs an optimum design to increase the structural collapse-resistant capacity. The failure pattern analysis and fragility analysis show that the optimum design leads to better performance than the original frame structure. For regular structures, it is demonstrated that the optimum pattern of viscous damper placement obtained from a 2D frame model can be directly used in the retrofitting of the 3D frame model. The economic loss and repair time analyses are conducted for the retrofitted frame structure under different earthquake intensities, including the frequent earthquake, the occasional earthquake, and the rare earthquake. Although the proposed method is based on time-history analyses, it seems that the computational cost is acceptable because the 2D frame model is adopted to determine the optimum pattern of viscous damper placement; meanwhile, the owner can clearly know the economic benefits of the retrofitting under different earthquake intensities. The retrofitting also causes the frame to have reduced environmental problems (such as carbon emission) compared to the original frame in the repair process after a rare earthquake happens.


Sign in / Sign up

Export Citation Format

Share Document