scholarly journals Intelligent Sports Training System Based on Artificial Intelligence and Big Data

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Chunguang Li ◽  
Jianbiao Cui

All activities in training fields are for the improvement of athletes’ competitive abilities. A sports training system is an organizational system to achieve common goals. Competitive ability is one of the main manifestations of the evolution of the training system. With the rapid development of computer technology, people have begun to combine virtual reality and other technologies to achieve scientific sports-assisted training to eliminate traditional sports training that relied purely on experience. Pose estimation obtains the position, angle, and additional information about the human body in the image in a two-dimensional plane or three-dimensional space by establishing the mapping relationship between the human body features and the human body posture. This article demonstrates a golf-assisted training system to realize the transformation from an experience-based sports training method to a human motion analysis method, using artificial intelligence and big data. The swing posture parameters of the trainer and the coach are obtained using the posture estimation of a human body. Based on this information, an auxiliary training system is built. The two parameters of the joint angle trajectory and the posture similarity are used as auxiliary indicators to compare the trainers. The joint angle trajectory is analyzed, and the coach is guided based on the similarity of the posture.

2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


2011 ◽  
Vol 403-408 ◽  
pp. 2593-2597
Author(s):  
Hong Bao ◽  
Zhi Min Liu

In the analysis of human motion, movement was divided into regular motion (such as walking and running) and random motion (such as falling down).Human skeleton model is used in this paper to do the video-based analysis. Key joints on human body were chosen to be traced instead of tracking the entire human body. Shape features like mass center trajectory were used to describe the movement, and to classify human motion. desired results achieved.


2016 ◽  
Vol 2 (1) ◽  
pp. 711-714 ◽  
Author(s):  
Daniel Laidig ◽  
Sebastian Trimpe ◽  
Thomas Seel

AbstractWe examine the usefulness of event-based sampling approaches for reducing communication in inertial-sensor-based analysis of human motion. To this end we consider realtime measurement of the knee joint angle during walking, employing a recently developed sensor fusion algorithm. We simulate the effects of different event-based sampling methods on a large set of experimental data with ground truth obtained from an external motion capture system. This results in a reduced wireless communication load at the cost of a slightly increased error in the calculated angles. The proposed methods are compared in terms of best balance of these two aspects. We show that the transmitted data can be reduced by 66% while maintaining the same level of accuracy.


2020 ◽  
Vol 179 ◽  
pp. 02050
Author(s):  
Yan-Xia Qu ◽  
Ming-Feng Wang

The rapid development of AI has affected the design process. The ability to analyze big data and AI’s efficiency, rapidity will bring great changes to the monitoring products especially for children. At present, the vast majority of intelligent child care products are based on the parental experience, designed in the aspect of parental supervision, and the children who use the product are often neglected. So change the way of designing, from the perspective of children using Intelligence technology, the ultimate child care products can play the most important role.


Author(s):  
Viktor Ivanovich Abramov ◽  
Azizbek Kurbonov

In modern conditions of global competition and the rapid development of digital technologies, there is a need for new tools for assessing the solvency of bank customers and reducing credit risks, reducing costs and increasing the profitability of the bank. The features and prospects of using big data and predictive analytics are analyzed, theoretical aspects of using Artificial intelligence (AI) technologies are considered and their advantages for banks are analyzed. The goal is to reduce the share of problem loans and quickly determine the solvency of clients.


2014 ◽  
Vol 926-930 ◽  
pp. 2743-2746 ◽  
Author(s):  
Rui Min Hu ◽  
Zhen Dong He ◽  
Feng Bai

With the rapid development of computer technology, human motion tracking based on video is a kind of using ordinary camera tracking unmarked human movement technology. It has important application value in automatic monitoring, human-computer interaction, sports analysis and many other fields. This research is a hot research direction in the field of computer vision in recent years. Because of the complexity of the problem and the lack of understanding of the nature of the human visual tracking based on video is always a difficult problem in computer vision. The research content of this article is set in sports training, for motion analysis of non-contact, no interfere with measurement and simulation requirements, the use of computer graphics and computer vision technology, discussing 3D human motion simulation technology based on video analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yanhong Zhou

With the rapid development of the information society, human body gesture recognition has become an important technology for human-computer interaction. This paper combines Kinect’s human bone monitoring technology with auxiliary gymnastics training. The gymnastics and dance training can correct students’ wrong movements in time through feedback and improve the training efficiency, so as to meet the needs of nature and harmony of human-machine interaction. In this paper, based on the wireless network Kinect, the human body posture recognition method and tracking technology are studied, and the joint point angle representation method based on the fixed axis is proposed, and the posture recognition method based on the joint point angle is improved, which can accurately recognize the human body posture. Aiming at the situation that the human joint points are occluded, the human joint point repair algorithm is improved. The algorithm is based on the proportion of human bone nodes and the characteristics of human motion, and based on geometric principles, it repairs the occluded points. The feasibility of the original joint point data, angle feature, and distance feature in expressing human behavior is analyzed through experiments, a standard gymnastics movement database is established, and new gymnastics movements can be entered at any time. A gymnastics auxiliary training system is designed, which can analyze and evaluate the exercises of the trainer from the joint point coordinates and the angle formed by the joints and provide the trainer with intuitive error correction prompts. The human body posture recognition method studied in this paper can accurately give the difference between the trainer’s movement and the standard movement, and the trainer can adjust the movement posture according to the prompts, improve the level of gymnastics, and achieve the purpose of auxiliary training. Experiments show that the algorithm model has an accuracy rate of 95.7% for human body posture recognition, and it plays a huge role in line dance aerobics and gymnastics training.


Author(s):  
Yong Bai ◽  
Yinggang Chen

With the advent of the information age, computer-related application research has become more and more extensive, human motion analysis and action scoring based on computer vision have gradually become the focus of attention. In order to adapt to the development of the times and solve the problems related to the analysis of human motion, the experiment analyzed the similarity of eight common human movement behaviors, analyze the movement speed of men and women under sports training, and analyzed the accuracy of the human body motion recognition model in the two cases of the original gray data and the frame difference channel, finally, the denoising performance of four different algorithms of SMF, EMF, RAMF and median filter algorithm in digital image processing is analyzed. The final result shows that there is a big similarity between the same kind of human movement behavior, the accuracy rate of the frame difference channel human body recognition model is higher than that of the original gray data recognition model, and digital image processing median filter algorithm has good image denoising performance.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6642
Author(s):  
Javier González-Alonso ◽  
David Oviedo-Pastor ◽  
Héctor J. Aguado ◽  
Francisco J. Díaz-Pernas ◽  
David González-Ortega ◽  
...  

Recent studies confirm the applicability of Inertial Measurement Unit (IMU)-based systems for human motion analysis. Notwithstanding, high-end IMU-based commercial solutions are yet too expensive and complex to democratize their use among a wide range of potential users. Less featured entry-level commercial solutions are being introduced in the market, trying to fill this gap, but still present some limitations that need to be overcome. At the same time, there is a growing number of scientific papers using not commercial, but custom do-it-yourself IMU-based systems in medical and sports applications. Even though these solutions can help to popularize the use of this technology, they have more limited features and the description on how to design and build them from scratch is yet too scarce in the literature. The aim of this work is two-fold: (1) Proving the feasibility of building an affordable custom solution aimed at simultaneous multiple body parts orientation tracking; while providing a detailed bottom-up description of the required hardware, tools, and mathematical operations to estimate and represent 3D movement in real-time. (2) Showing how the introduction of a custom 2.4 GHz communication protocol including a channel hopping strategy can address some of the current communication limitations of entry-level commercial solutions. The proposed system can be used for wireless real-time human body parts orientation tracking with up to 10 custom sensors, at least at 50 Hz. In addition, it provides a more reliable motion data acquisition in Bluetooth and Wi-Fi crowded environments, where the use of entry-level commercial solutions might be unfeasible. This system can be used as a groundwork for developing affordable human motion analysis solutions that do not require an accurate kinematic analysis.


Sign in / Sign up

Export Citation Format

Share Document