scholarly journals Analyzing Vibration Mechanism of Angular Contact Ball Bearing with Compound Faults on Inner and Outer Rings

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Lihai Chen ◽  
Ma Fang ◽  
Ming Qiu ◽  
Yanfang Dong ◽  
Xiaoxu Pang ◽  
...  

This paper investigates a method to dynamically model compound faults on the inner and outer rings of an angular contact ball bearing as well as their effects on its dynamic behavior. Gupta’s dynamic modeling method is used to consider changes in the deformation and direction of the contact load when the ball passes through the damaged area and to develop a dynamic model of compound faults in the angular contact ball bearing. The step-changing fourth-order Runge–Kutta method is used to solve the dynamic compound fault model. The time-domain signal of vibration responses in the case of a single fault in the inner and outer rings exhibited a certain periodicity, and the frequency of faults in the envelope spectrum was clear. By comparison, the periodicity of compound faults was not clear. The signals of compound faults were decomposed by the dual-tree complex wavelet transform to identify their characteristic frequency. Errors occurred between the characteristic frequency of the theoretical fault and its simulated value. They increased with the rotational speed and decreased with an increase in axial load, whereas the influence of radial load on them was minor. For compound faults on the inner and outer rings of an angular contact ball bearing, this study provides a modeling method that can describe changes in the deformation and direction of the contact load when the ball passes through the damaged area of the inner and outer rings. The work here can provide an important foundation for fault identification in angular contact ball bearings.

2013 ◽  
Vol 842 ◽  
pp. 391-396
Author(s):  
Li Gang Cai ◽  
Gen Li ◽  
Ya Hui Cui ◽  
Tie Neng Guo ◽  
Yong Sheng Zhao

This paper established a general mathematical modeling method based on stress analysis of the angular contact ball bearing under high rotation speed. The influence of the centrifugal force and gyroscopic moment generated in the rotation process is taken into account in this mathematical model. This paper conducted in-depth research for these aspects: the stiffness characteristics of angular contact ball bearings under different load conditions and different rotational speed, internal contact deformation and the change of bearing parameters.


Author(s):  
Sijia Chen ◽  
Fangbo Ma ◽  
Peng Ji ◽  
Qi An

Taking the off-sized balls and raceway error into account, the effects of axial preloading displacement on the mechanical performance of angular contact ball bearings are investigated in this paper. Through the geometric analysis of the angular contact ball bearing and the force balance, the contact load-deformation expressions of ball-to-raceway, the expression of load zone and their relation to axial preloading displacement are derived. By numerical calculation for a concrete example, we found the influences of preloading on the loading zone and maximum ball load and found the influences of off-sized balls and raceway error on the minimum preloading displacement, ball load distribution, inner ring centre trajectory and inner ring vibration frequency. Some curves about these influences are obtained and discussed.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Wei Xiong ◽  
Qingbo He ◽  
Zhike Peng

Wayside acoustic defective bearing detector (ADBD) system is a potential technique in ensuring the safety of traveling vehicles. However, Doppler distortion and multiple moving sources aliasing in the acquired acoustic signals decrease the accuracy of defective bearing fault diagnosis. Currently, the method of constructing time-frequency (TF) masks for source separation was limited by an empirical threshold setting. To overcome this limitation, this study proposed a dynamic Doppler multisource separation model and constructed a time domain-separating matrix (TDSM) to realize multiple moving sources separation in the time domain. The TDSM was designed with two steps of (1) constructing separating curves and time domain remapping matrix (TDRM) and (2) remapping each element of separating curves to its corresponding time according to the TDRM. Both TDSM and TDRM were driven by geometrical and motion parameters, which would be estimated by Doppler feature matching pursuit (DFMP) algorithm. After gaining the source components from the observed signals, correlation operation was carried out to estimate source signals. Moreover, fault diagnosis could be carried out by envelope spectrum analysis. Compared with the method of constructing TF masks, the proposed strategy could avoid setting thresholds empirically. Finally, the effectiveness of the proposed technique was validated by simulation and experimental cases. Results indicated the potential of this method for improving the performance of the ADBD system.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Shengye Lin ◽  
Shuyun Jiang

This paper studies the stiffness characteristics of preloaded duplex angular contact ball bearings. First, a five degrees-of-freedom (5DOF) quasi-static model of the preloaded duplex angular contact ball bearing is established based on the Jones bearing model. Three bearing configurations (face-to-face, back-to-back, and tandem arrangements) and two preload mechanisms (constant pressure preload and fixed position preload) are included in the proposed model. Subsequently, the five-dimensional stiffness matrix of the preloaded duplex angular contact ball bearing is derived analytically. Then, an experimental setup is developed to measure the radial stiffness and the angular stiffness of duplex angular contact ball bearings. The simulated results match well with those from experiments, which prove the validity of the proposed model. Finally, the effects of bearing configuration, preload mechanism, and unloaded contact angle on the angular stiffness and the cross-coupling are studied systematically.


1995 ◽  
Vol 18 (10) ◽  
pp. 568-572 ◽  
Author(s):  
Yelena S. K. Orlov ◽  
Michael A. Brodsky ◽  
Michael V. Orlov ◽  
Byron J. Allen ◽  
Rex J. Winters

Author(s):  
Chris Waudby ◽  
John Christodoulou

Non-uniform weighted sampling (NUWS) is a simple method for multi-dimensional NMR spectroscopy in which window functions are applied during acquisition by sampling varying numbers of scans across indirect dimensions. While NUWS was previously shown to provide modest increases in sensitivity, here we describe a complementary application to enhance spectral resolution by increasing the sampling of later points of the time domain signal. Moreover, by combining NUWS with carefully constructed apodization functions signal envelopes can be modulated in an arbitrary manner while retaining a uniform noise level, permitting further signal manipulations such as linear prediction and non-uniform sampling (NUS). We leverage this to develop a combined NUWS-NUS scheme for broadband homonuclear decoupling, with substantially increased sensitivity in comparison to constant time experiments.


Sign in / Sign up

Export Citation Format

Share Document