scholarly journals Economic Spectrofluorometric Bioanalysis of Empagliflozin in Rats’ Plasma

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Bassam Ayoub ◽  
Noha El Zahar ◽  
Haidy Michel ◽  
Mariam Tadros

A simple, economic, green, and sensitive bioanalytical method for empagliflozin bioassay in rats’ plasma was employed successfully owing to the empagliflozin native fluorescence behavior. Enhanced liquid-liquid extraction, using diethyl ether (DEE), was successfully employed for the improved extraction of empagliflozin from rats’ plasma based on its high value of logP as 1.8 that boosted the drug migration from plasma to the organic layer. The relative fluorescence intensity for empagliflozin was recorded at emission (299.4 nm) after excitation at 226.5 nm. The method was validated with satisfactory results for linearity (500–5000 ng/mL), trueness, precision, the matrix effect, and extraction recovery. The matrix effect ranged between 15.63% and 23.10% for LQC and HQC samples, respectively. Extraction recovery ranged between 54.61% and 62.54% for LQC and HQC samples, respectively. Bias values for the trueness ranged between −10.62 and +14.95, while %RSD values for the precision ranged between 5.39% and 9.33%. The method was successfully applied to rats’ plasma samples that included six rats, and the drug concentration was determined in their plasma after 1 hour (estimated Cmax based on literature) following oral administration of empagliflozin with a concentration of 10 mg/Kg, p.o.. The developed cost-effective spectrofluorimetric method in the present work will be of beneficial use in further pharmacokinetic studies that include rats’ plasma and biological fluids. Moreover, with the suitable modifications, the described novel extraction of empagliflozin could be adopted to human plasma samples and future clinical studies. Moreover, development of new simple cost-effective methods is necessary to give the researchers a set of “varieties” that they can use according to the laboratory limitations, especially in the developing countries in addition of being a greener method due to the lower consumption of toxic solvents and lower waste production.

1989 ◽  
Vol 35 (2) ◽  
pp. 298-301 ◽  
Author(s):  
W E Lambert ◽  
M A Yousouf ◽  
B M Van Liedekerke ◽  
J E De Roose ◽  
A P De Leenheer

Abstract We describe a sensitive and specific liquid-chromatographic assay for pentoxifylline and three of its metabolites in human plasma and urine. Addition of hydrochloric acid to the sample before extraction, and incorporation of acetic acid in the chromatographic eluent, allow the simultaneous determination of the four compounds plus an internal standard in one chromatographic run. Unlike gas-chromatographic procedures, this method does not involve derivatization no similar analysis of serum or plasma samples has been described before now. The method has been applied successfully to routine analysis and to pharmacokinetic studies.


Author(s):  
Bo Li ◽  
Jin Wang ◽  
Xinyao Dou ◽  
Xinjie Zhang ◽  
Xianbei Xue ◽  
...  

Aim and Objective:: An analytical method for the determination of mobocertinib, an investigational tyrosine kinase inhibitor, was developed and optimized by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) in rat plasma. Materials and Methods:: Plasma samples were pretreated by the protein precipitation method with a methanol solution of osimertinib as the internal standard (IS). Chromatographic separation was performed using an Inertsil ODS-3 column (50 mm × 4.6 mm, I.D. 5 μm) column with the temperature maintained at 40 °C. The mobile phase consisted of water (containing 0.1% formic acid) and methanol in a gradient mode at a flow rate of 0.5 mL/min. Mass spectrometric detection was carried out in the selected reaction monitoring (SRM) mode with positive electrospray ionization, and the mass transitions of mobocertinib and osimertinib were m/z 587.01 → 71.88 and m/z 499.80 → 71.94, respectively. The method was validated in terms of selectivity, linearity, accuracy and precision, extraction recovery and matrix effect, stability and carryover as per the guidelines for bioanalytical method validation (FDA, 2018). The method was applied to the pharmacokinetic study of mobocertinib in rats by oral gavage at the doses of 2, 6, and 18 mg/kg. A total of 216 plasma samples from 18 rats were analyzed. Results:: It showed good linearity over the range of 1-1000 ng/mL (R2 = 0.9957). The intra-batch accuracy was within 94.65-102.59% and the precision was within 5.49-10.46%. The inter-batch accuracy was within 97.08-102.25% with a precision of 7.54-10.13%. The extraction recovery and matrix factor were acceptable for the bioanalysis of mobocertinib. Additionally, mobocertinib was found to be stable under the detected conditions. Mobocertinib showed linear pharmacokinetic characteristics following oral administration to rats at 2.0-18.0 mg/kg. Conclusion:: The developed and validated method was successfully employed in the pharmacokinetic study in rats following oral administration of mobocertinib at the doses of 2, 6, and 18 mg/kg.


2019 ◽  
Vol 6 (1) ◽  
pp. 30-41
Author(s):  
Ranjith Arimboor ◽  
Karunkara Ramakrishna Menon ◽  
Natarajan Ramesh Babu ◽  
Haneesh Chandran

Background:Increased consumer demand for curry leaves free from pesticides demands fast and reliable analytical methods for the analysis of pesticide residues.Objective:The optimization of a QuEChERS based sample preparation technique with improved analytical accuracy by removing interfering matrix components for LC-MS/MS analysis of pesticide residues from curry leaves.Methods:A modified QuEChERS solid phase extraction method was developed and validated for the analysis of 26 pesticides in fresh and dried curry leaves. The effects of the sample preparation steps and column retention time on the matrix suppression of analyte ions were also evaluated.Results:Validation parameters were found within an acceptable range. The matrix effect evaluation studies showed that the QuEChERS sample preparation was able to minimize the ion suppression of analytes due to co-eluting matrix of components and that a d-SPE clean up step had major role in reducing matrix effect. The gradient mobile phase with longer retention time for analytes resulted in comparatively lesser matrix effects than the isocratic mobile phase of non-polar nature. Even after the clean up, a considerable number of compounds had more than 20% reduction in their MS response in the gradient mobile phase.Conclusion:This study emphasized the need of proper sample clean up before a LC-MS/MS analysis and the usage of matrix matched standards and mobile phase that ultimately results in an appropriate analyte separation in reasonable retention times.


1965 ◽  
Vol 30 (4) ◽  
pp. 1303-1310 ◽  
Author(s):  
M. Matherny ◽  
N. Pliešovská ◽  
Ž. Rybárová

Fuel ◽  
2021 ◽  
Vol 290 ◽  
pp. 119866
Author(s):  
Eliane Lazzari ◽  
Érica A. Souza Silva ◽  
Thiago R. Bjerk ◽  
Jaderson K. Schneider ◽  
Elina Bastos Caramão

Author(s):  
Fabiane M. Stringhini ◽  
Lucila C. Ribeiro ◽  
Graziela I. Rocha ◽  
Juliana D. de B. Kuntz ◽  
Renato Zanella ◽  
...  

AbstractTomato is well-known to be one of the most cultivated and consumed vegetables worldwide and frequently contain pesticide residues. Therefore, a simple multiresidue method was established and validated to determine 129 pesticides and metabolites in tomato samples using a modified acetate QuEChERS without cleanup for sample preparation and determination by ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Dilution of the raw extract in different proportions of mobile phase was evaluated and a dilution of 10 times presented adequate results improving analysis performance while minimizing the matrix effect. Validation performed according to SANTE guideline presented satisfactory results. Practical method limit of quantification was 0.01 mg kg−1 for most compounds. Recoveries between 70 and 120% with precision ≤ 20% were found for most compounds and spike levels evaluated. Matrix effect results were not significant for most part of compounds. Method proved to be simple, robust, and effective to be applied in routine analysis. Method applicability was performed by analysis of samples commercialized in Brazil and positive results were found demonstrating the importance of the proposed method.


ChemInform ◽  
1987 ◽  
Vol 18 (37) ◽  
Author(s):  
A. SEKIGUCHI ◽  
K. HAGIWARA ◽  
W. ANDO
Keyword(s):  

1999 ◽  
Vol 288 (1-2) ◽  
pp. 111-119 ◽  
Author(s):  
Maribel Sánchez ◽  
Francesca Canalias ◽  
Teresa Palencia ◽  
F.-Javier Gella

2018 ◽  
Vol 8 (12) ◽  
pp. 2406 ◽  
Author(s):  
Hamed Saghafi ◽  
Mohamad Fotouhi ◽  
Giangiacomo Minak

This paper reviews recent works on the application of nanofibers and nanoparticle reinforcements to enhance the interlaminar fracture toughness, to reduce the impact induced damage and to improve the compression after impact performance of fiber reinforced composites with brittle thermosetting resins. The nanofibers have been mainly used as mats embedded between plies of laminated composites, whereas the nanoparticles have been used in 0D, 1D, 2D, and 3D dimensional patterns to reinforce the matrix and consequently the composite. The reinforcement mechanisms are presented, and a comparison is done between the different papers in the literature. This review shows that in order to have an efficient reinforcement effect, careful consideration is required in the manufacturing, materials selection and reinforcement content and percentage. The selection of the right parameters can provide a tough and impact resistant composite with cost effective reinforcements.


Sign in / Sign up

Export Citation Format

Share Document