scholarly journals A Novel Method for Handicrafts Design Based on Fusion of Multi-Intelligent Decision Algorithm

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Xiaotian Sun

With the rapid development of artificial intelligence, handicraft design has developed from artificial design to artificial intelligence design. Traditional handicraft design has the problems of long time consumption and low output, so it is necessary to improve the process technology. Artificial intelligence technology can provide optimized design steps in handicraft design and improve design efficiency and process level. Handicrafts are regarded as important social products and exist in people’s daily life. In the current society, many people do handicrafts and there are major exhibitions. Furthermore, the display of handicrafts is also very grand and shocking. In the design of handicrafts, the traditional design method cannot completely keep up with the production speed and efficiency of handicrafts. Therefore, this paper adopts the fusion multi-intelligent decision algorithm of multi-node branch design in the design method of handicraft. The algorithm model combination is used to analyze and design the layout of the handicraft, which speeds up the design efficiency and production of the handicraft. In this paper, two intelligent algorithms will be used for fusion; they are genetic algorithm and GA-PSO fusion algorithm obtained by particle swarm optimization and they are embedded in handicraft design method for application through mathematical model construction and function construction. After comparing the performance parameter index data of three intelligent algorithms and GA-PSO fusion algorithm, it is obtained that GA-PSO fusion algorithm is 97% correct and has 82% readability, 72% robustness, and 61% structure, making it have better important indicators. Four algorithms optimize each design problem in all aspects of handicraft design at present. Design efficiency, image distribution rate, image optimization degree, and image clarity are compared by simulation experiments. Compared with three intelligent algorithms, traditional design methods, and manual design methods, GA-PSO fusion algorithm can effectively improve the design method and design effect of handicrafts with 92.1% design efficiency, 82.7% image distribution rate, 94.3% image optimization degree, and 84% layout void rate. Finally, the space complexity experiment of four algorithms shows that GA-PSO algorithm can achieve 9.73 dispersion with 11.42 space complexities, which makes the dimension reduction relatively stable, and the algorithm can maintain stability in the design and application of handicrafts.

2012 ◽  
Vol 479-481 ◽  
pp. 2504-2510
Author(s):  
Jing Feng Huang

A ship general design platform is established in order to satisfy the requirement integrating design, analysis and optimization in ship design process. A design-analysis unified connected model is developed based on digital ship idea and a ship general design platform frame system is formed based on the template technology. In the preliminary application process, a design tool database and an applicative template database are established. That the reliability proves to be good is significant for promoting traditional design method and improving design efficiency.


2010 ◽  
Vol 97-101 ◽  
pp. 3677-3681
Author(s):  
Zong Yan Wang ◽  
Dong Xia Zhu ◽  
Chun Yue Lu

To solve the problem such as large amounts of repeated designs and long design cycle in the traditional design process of crane, the principles of variable-type design were illustrated detailed on the background of holographic model, a series of key variable-type design technologies were introduced based on template concept, including parameter link technology of module interface, assembly sketch technology, coding techniques of assembly configuration, parametric finite element analysis technology etc. These methods have been applied to the design case of gantry crane, it proves that these methods can enhance the system reusability, improve the design efficiency of products and make the design results more perfect, and has achieved desired outcome.


2020 ◽  
Vol 12 (2) ◽  
pp. 453
Author(s):  
Yanqiu Cui ◽  
Simeng Li ◽  
Chunlu Liu ◽  
Ninghan Sun

In recent years, due to the advantages of high construction efficiency and less environmental pollution, prefabricated housing has been of increasing interest and vigorously promoted. However at present, most prefabricated houses simply pursue an increase in assembly rate, and the floor plan design still continues to follow the traditional design method of housing, which does not meet the requirements of industrialization and cannot achieve the goal of product diversification. This paper puts forward a method for floor plan designs of prefabricated houses whose core is building plane module libraries. The modules in module libraries all conform to standardized and refined designs. A new residential floor plan can be obtained by selecting and recombining modules in module libraries. The richer the module library, the more diverse the results will be under the same combinatorial logic, which can greatly improve design efficiency. In addition, this paper probes the method of creation and applications of plane module libraries in detail, so as to provide a new idea for floor plan designs of prefabricated houses. This research is of great significance for improving the efficiency of floor plan design of prefabricated housing and realizing goals of standardization and diversification of prefabricated housing development.


2014 ◽  
Vol 716-717 ◽  
pp. 1518-1521
Author(s):  
Shu Fang ◽  
Yan Xu ◽  
Fei Dong

The manufacture of fire robot has characteristics such as different types and piece production, and flexible manufacture and cost control of the fire robot must be considered due to these characteristics. In this paper, the similarity of fire robot’s working environment was analyzed, The demand of chassis’s adaptability and the method using general technical platform were discussed with the thinking of modular design, and new series fire robots which composed of the general platform and different function modules were proposed, and the manufacture cost of traditional design method and modular design method were compared in using the activity-based costing method, and under the new design method the manufacture cost were decreased extremely.


2009 ◽  
Vol 14 (12) ◽  
pp. 1329-1337 ◽  
Author(s):  
Guolong Chen ◽  
Wenzhong Guo ◽  
Yuzhong Chen

1987 ◽  
Vol 24 (02) ◽  
pp. 131-142
Author(s):  
Warren F. Smith ◽  
Saiyid Kamal ◽  
Farrokh Mistree

The design of engineering systems involves the design of dependent subsystems and the integration of these into a whole. A typical system has the characteristics of being multileveled, multidimensional, and multidisciplined in nature. It is this complexity which causes problems for the designer in making well-founded decisions. A decision support technique has been developed which offers a structured facility for the design of the subsystems and for the modeling of the interaction which is present between subsystems. The method, employing optimization procedures, allows all aspects of the system design to be considered concurrently, to produce the "best" solution, as defined by the specifications. This is in contrast to the traditional design method, which is iterative and cyclic in nature, involving sequential reevaluation and refinement. In this paper, the effectiveness and efficiency of the decision support problem approach is demonstrated using the hierarchical characteristics of a design for a barge. The barge problem, though basic in form, is comprehensive in concept and tutorial in nature. As a formulation for "system" optimization, it uses a computer-based method for solution and illustrates the virtues of a multilevel/multidisciplinary approach to design and decision-making. It also exhibits the same characteristics and provides valuable insight into the solution of the more complex problems encountered in practical ship design.


1998 ◽  
Vol 37 (11) ◽  
pp. 105-111 ◽  
Author(s):  
Jasna Petrovic ◽  
Jovan Despotovic

Traditional design method for urban drainage systems is based on design storms and its major drawback is that frequencies of peak flows in the system are considered equal to frequencies of design storms. An alternative is to use historical storms with rainfall-runoff models to produce a series of possible flows in the system and their frequencies. The latter approach involves more computations and can be laborious for larger catchments. This paper considers ways to reduce the set of historical storms to be involved in design procedure and yet to lead to realistic flow frequencies. Frequencies obtained by rainfall-runoff simulation at an experimental catchment are compared with frequencies of observed peak flows in the system.


Author(s):  
Yunlong Tang ◽  
Yaoyao Fiona Zhao

Parts with complex geometry structure can be produced by AM without significant increase of fabrication time and cost. One application of AM technology is to fabricate customized lattice-skin structure which can enhance performance of products with less material and less weight. However, most of traditional design methods only focus on design at macro-level with solid structure. Thus, a design method which can generate customized lattice-skin structure for performance improvement and functionality integration is urgently needed. In this paper, a novel design method for lattice-skin structure is proposed. In this design method, FSs and FVs are firstly generated according to FRs. Then, initial design space is created by filling FVs and FSs with selected lattice topology and skin, respectively. In parallel to the second step, initial parameters of lattice-skin structure are calculated based on FRs. Finally, TO method is used to optimize parameter distribution of lattice structure with the help of mapping function between TO’s result and lattice parameters. The design method proposed in this paper is proven to be efficient with case study and provides an important foundation for wide adoption of AM technologies in industry.


2014 ◽  
Vol 889-890 ◽  
pp. 203-207
Author(s):  
Rui Zhou ◽  
Wei Dong Luo ◽  
Ya Hui Li

Only one or a few individual template confirm corresponding pint in traditional light bus cab H point design, different bodies and special requirements arent considered. The regional function method which gets a contented region through many different design requirements can make the design much more flexible, convenient, and practical in the bus cab design. Regional function method is analyzed and used to reducing the shortages of traditional design method in this paper. Mathematical model and deeply analysis are made mainly about riding comfort, vision field and hard point to optimize bus cab H point. finally matlab is used to calculate H point through an application of a light bus.


Sign in / Sign up

Export Citation Format

Share Document