scholarly journals Transmission Kossel Study of the Structure of Cold-Rolled Iron and its Nucleation Behaviour

1977 ◽  
Vol 2 (3) ◽  
pp. 143-168 ◽  
Author(s):  
Y. Inokuti ◽  
R. D. Doherty

By examining thin sections and by use of the more strongly absorbed Ti Kα radiation rather than Fe Kα radiation it was found possible to obtain useful transmission Kossel patterns from iron that had been deformed 40% by rolling. Examination of the as–deformed material showed large misorientations in all the matrix grains (20–54°) and many of the grains showed deformation bands where the orientation changed rapidly (up to 15° over distances of 50 μm). On annealing the material recrystallized by strain-induced boundary migration with all the invaded grains being those with (111) parallel to the rolling plane. Only one example was found of new grain formation by mutual invasion across a deformation band, the main nucleation mode previously observed in aluminum deformed 40% by compression. The difference between the two examples appears to arise from the smaller misorientations of the deformation bands in rolled iron.

Author(s):  
B. B. Rath ◽  
J. E. O'Neal ◽  
R. J. Lederlch

When deformed metals and alloys are annealed at sufficiently high temperatures, strain-free nuclei appear at preferential sites and grow predominantly by grain-boundary migration. A majority of these strain-free grains collectively exhibit specific types of crystallographic orientations which significantly differ from those of the deformed matrix. The texture thus formed is frequently related to the deformation texture by simple angular rotations about particular crystallographic axes. In contrast to most metals and alloys for which the recrystallization and deformation textures are distinctly different, Ti exhibits a similar texture in both the cold-rolled and recrystallized conditions; this texture is characterized by two symmetrical texture components such that the (1010) in each remains parallel to the rolling direction and the [0001] is tilted along the transverse direction between 30 and 40 deg from the rolling-plane normal.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7122
Author(s):  
Veronika Kodetová ◽  
Martin Vlach ◽  
Lucia Bajtošová ◽  
Michal Leibner ◽  
Hana Kudrnová ◽  
...  

The microstructure, electrical properties and microhardness of as-cast and cold rolled AlYb and AlMnYbZr alloys were investigated. The addition of Mn, Yb and Zr has a positive influence on grain size. A deformed structure of the grains with no changes of their size was observed after cold rolling. The Al3Yb particles coherent with the matrix were observed in the AlYb alloys. The size of the particles was about 20 nm in the initial state; after isochronal treatment up to 540 °C the particles coarsen, and their number density was lower. The deformation has a massive effect on the microhardness behavior until treatment at 390 °C, after which the difference in microhardness changes between as-cast and cold rolled alloys disappeared. Relative resistivity changes show a large decrease in the temperature interval of 330–540 °C which is probably caused by a combination of recovery of dislocations and precipitation of the Al3(Yb,Zr) particles. Precipitation hardening was observed between 100 and 450 °C in the AlYb alloy after ageing at 625 °C/24 h and between 330 and 570 °C in the AlMnYbZr alloy after ageing at 625 °C/24 h.


2010 ◽  
Vol 638-642 ◽  
pp. 2817-2822
Author(s):  
Cynthia S.T. Chang ◽  
B.J. Duggan

In this work the nucleation of the Cube recrystallised grains in AA6111 was investigated. The alloys were cold rolled to 85% and then annealed at different temperatures in an air circulation furnace. X-ray diffraction was used to obtain global textures and for specific area of interest, Electron-Back Scattered Pattern (EBSP) was used. In order to observe the microstructures after rolling and partially annealing, Scanning Electron Microscopy (SEM) was used. It was found that the recrystallisation textures are strongly related to the annealing temperature. The recrystallisation texture after low temperature annealing gives a strong retained rolling texture and at high temperature, a fairly random texture with weak Cube and rotated Cube components. The difference in the volume fraction of Cube with different alloys and annealing temperature are related to the deformation microstructures. Cube bands are observed to be deformation bands on the rolling plane. During annealing, precipitates are formed on the deformation band boundaries and Cube nuclei which are formed in the deformation Cube band are restricted to growth due to the precipitates.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
R.A. Herring

Rapid thermal annealing (RTA) of ion-implanted Si is important for device fabrication. The defect structures of 2.5, 4.0, and 6.0 MeV As-implanted silicon irradiated to fluences of 2E14, 4E14, and 6E14, respectively, have been analyzed by electron diffraction both before and after RTA at 1100°C for 10 seconds. At such high fluences and energies the implanted As ions change the Si from crystalline to amorphous. Three distinct amorphous regions emerge due to the three implantation energies used (Fig. 1). The amorphous regions are separated from each other by crystalline Si (marked L1, L2, and L3 in Fig. 1) which contains a high concentration of small defect clusters. The small defect clusters were similar to what had been determined earlier as being amorphous zones since their contrast was principally of the structure-factor type that arises due to the difference in extinction distance between the matrix and damage regions.


Author(s):  
P B Parejiya ◽  
B S Barot ◽  
P K Shelat

The present study was carried out to fabricate a prolonged design for tramadol using Kollidon SR (Polyvinyl acetate and povidone based matrix retarding polymer). Matrix tablet formulations were prepared by direct compression of Kollidon SR of a varying proportion with a fixed percentage of tramadol. Tablets containing a 1:0.5 (Drug: Kollidon SR) ratio exhibited a rapid rate of drug release with an initial burst effect. Incorporation of more Kollidon SR in the matrix tablet extended the release of drug with subsequent minimization of the burst effect as confirmed by the mean dissolution time, dissolution efficiency and f2 value. Among the formulation batches, a direct relationship was obtained between release rate and the percentage of Kollidon SR used. The formulation showed close resemblance to the commercial product Contramal and compliance with USP specification. The results were explored and explained by the difference of micromeritic characteristics of the polymers and blend of drug with excipients. Insignificant effects of various factors, e.g. pH of dissolution media, ionic strength, speed of paddle were found on the drug release from Kollidon-SR matrix. The formulation followed the Higuchi kinetic model of drug release. Stability study data indicated stable character of Batch T6 after short-term stability study.


1987 ◽  
Vol 33 (115) ◽  
pp. 274-280 ◽  
Author(s):  
David M. Cole

AbstractThis paper presents and discusses the results of constant deformation-rate tests on laboratory-prepared polycrystalline ice. Strain-rates ranged from 10−7to 10−1s−1, grain–size ranged from 1.5 to 5.8 mm, and the test temperature was −5°C.At strain-rates between 10−7and 10−3s−1, the stress-strain-rate relationship followed a power law with an exponent ofn= 4.3 calculated without regard to grain-size. However, a reversal in the grain-size effect was observed: below a transition point near 4 × 10−6s−1the peak stress increased with increasing grain-size, while above the transition point the peak stress decreased with increasing grain-size. This latter trend persisted to the highest strain-rates observed. At strain-rates above 10−3s−1the peak stress became independent of strain-rate.The unusual trends exhibited at the lower strain-rates are attributed to the influence of the grain-size on the balance of the operative deformation mechanisms. Dynamic recrystallization appears to intervene in the case of the finer-grained material and serves to lower the peak stress. At comparable strain-rates, however, the large-grained material still experiences internal micro-fracturing, and thin sections reveal extensive deformation in the grain-boundary regions that is quite unlike the appearance of the strain-induced boundary migration characteristic of the fine-grained material.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 605
Author(s):  
Franco Lizzi ◽  
Kashyap Pradeep ◽  
Aleksandar Stanojevic ◽  
Silvana Sommadossi ◽  
Maria Cecilia Poletti

Inconel®718 is a well-known nickel-based super-alloy used for high-temperature applications after thermomechanical processes followed by heat treatments. This work describes the evolution of the microstructure and the stresses during hot deformation of a prototype alloy named IN718WP produced by powder metallurgy with similar chemical composition to the matrix of Inconel®718. Compression tests were performed by the thermomechanical simulator Gleeble®3800 in a temperature range from 900 to 1025 °C, and strain rates scaled from 0.001 to 10 s−1. Flow curves of IN718WP showed similar features to those of Inconel®718. The relative stress softening of the IN718WP was comparable to standard alloy Inconel®718 for the highest strain rates. Large stress softening at low strain rates may be related to two phenomena: the fast recrystallization rate, and the coarsening of micropores driven by diffusion. Dynamic recrystallization grade and grain size were quantified using metallography. The recrystallization grade increased as the strain rate decreased, although showed less dependency on the temperature. Dynamic recrystallization occurred after the formation of deformation bands at strain rates above 0.1 s−1 and after the formation of subgrains when deforming at low strain rates. Recrystallized grains had a large number of sigma 3 boundaries, and their percentage increased with strain rate and temperature. The calculated apparent activation energy and strain rate exponent value were similar to those found for Inconel®718 when deforming above the solvus temperature.


1988 ◽  
Vol 91 (1) ◽  
pp. 5-11
Author(s):  
J.B. Rattner ◽  
D.P. Bazett-Jones

Specific antibody labelling indicates that phosphoproteins are present at microtubule-organizing centres, including the centrosome. We have employed electron spectroscopic imaging techniques that permit high-resolution elemental analysis of thin sections of intact cells to investigate the precise distribution of phosphorus and therefore phosphoproteins at the centrosome of Indian muntjac cells. We report that these proteins are localized to both the pericentriolar matrix and the centriole. The matrix contains an abundance of phosphorus and is associated with microtubule elements. Within the mature centriole, major structures including the nine triplet blades and linking elements that connect adjacent blades are composed of phosphorylated proteins. In addition, phosphoproteins are abundant at the ends of the centriole, at the interface between the centriole lumen and the pericentriolar environment. From these observations we suggest that phosphoproteins may play both a structural and a functional role within the centrosome region.


2018 ◽  
Vol 146 (12) ◽  
pp. 3949-3976 ◽  
Author(s):  
Herschel L. Mitchell ◽  
P. L. Houtekamer ◽  
Sylvain Heilliette

Abstract A column EnKF, based on the Canadian global EnKF and using the RTTOV radiative transfer (RT) model, is employed to investigate issues relating to the EnKF assimilation of Advanced Microwave Sounding Unit-A (AMSU-A) radiance measurements. Experiments are performed with large and small ensembles, with and without localization. Three different descriptions of background temperature error are considered: 1) using analytical vertical modes and hypothetical spectra, 2) using the vertical modes and spectrum of a covariance matrix obtained from the global EnKF after 2 weeks of cycling, and 3) using the vertical modes and spectrum of the static background error covariance matrix employed to initiate a global data assimilation cycle. It is found that the EnKF performs well in some of the experiments with background error description 1, and yields modest error reductions with background error description 3. However, the EnKF is virtually unable to reduce the background error (even when using a large ensemble) with background error description 2. To analyze these results, the different background error descriptions are viewed through the prism of the RT model by comparing the trace of the matrix , where is the RT model and is the background error covariance matrix. Indeed, this comparison is found to explain the difference in the results obtained, which relates to the degree to which deep modes are, or are not, present in the different background error covariances. The results suggest that, after 2 weeks of cycling, the global EnKF has virtually eliminated all background error structures that can be “seen” by the AMSU-A radiances.


Sign in / Sign up

Export Citation Format

Share Document