Abstract 1740: Over-expression of gelsolin protein in human cervical carcinoma associate with cell migration in vitro and recurrence-free survival in vivo

Author(s):  
Tzu-I Wu ◽  
Chia-Jung Liao ◽  
Ting-Chang Chang ◽  
Kwang Huei Lin
2016 ◽  
Vol 27 (10) ◽  
pp. 979-987 ◽  
Author(s):  
Xiao-Wen Liu ◽  
Ping Yuan ◽  
Jun Tian ◽  
Ling-Jun Li ◽  
Yu Wang ◽  
...  

2009 ◽  
Vol 87 (6) ◽  
pp. 933-942 ◽  
Author(s):  
Li Yang ◽  
Hai-wei Zhang ◽  
Rong Hu ◽  
Yong Yang ◽  
Qi Qi ◽  
...  

Wogonin, a naturally occurring flavonoid, has been shown to have tumor therapeutic potential both in vitro and in vivo. To better understand its anticancer mechanism, we examined the effect of wogonin on human cervical carcinoma HeLa cells. In this study, we observed that G1 phase arrest was involved in wogonin-induced growth inhibition in HeLa cells. Over a 24 h exposure of HeLa cells to 90 µmol·L–1 wogonin, the promoters of G1–S transition, including cyclin D1/Cdk4 and pRb, decreased within 12 h and E2F-1 depleted in the nucleus at the same time. As the G1 phase arrest developed, p53 and the Cdk inhibitor p21Cip1 elevated both at protein and mRNA levels. Furthermore, the up-regulation of p21Cip1 induced by wogonin was dramatically inhibited by siRNA-mediated p53 gene silencing. Collectively, our data suggested that wogonin induced G1 phase arrest in HeLa cells by modulating several key G1 regulatory proteins, such as Cdk4 and cyclin D1, as well as up-regulation of a p53-midiated p21Cip1 expression. This mechanism of wogonin may play an important role in the killing of cancerous cells and offer a potential mechanism for its anticancer action in vivo.


2021 ◽  
Vol 23 (1) ◽  
pp. 215
Author(s):  
Florence Bonnet-Magnaval ◽  
Leïla Halidou Diallo ◽  
Valérie Brunchault ◽  
Nathalie Laugero ◽  
Florent Morfoisse ◽  
...  

Stau1 is a pluripotent RNA-binding protein that is responsible for the post-transcriptional regulation of a multitude of transcripts. Here, we observed that lung cancer patients with a high Stau1 expression have a longer recurrence free survival. Strikingly, Stau1 did not impair cell proliferation in vitro, but rather cell migration and cell adhesion. In vivo, Stau1 depletion favored tumor progression and metastases development. In addition, Stau1 depletion strongly impaired vessel maturation. Among a panel of candidate genes, we specifically identified the mRNA encoding the cell adhesion molecule Thrombospondin 1 (THBS1) as a new target for Staufen-mediated mRNA decay. Altogether, our results suggest that regulation of THBS1 expression by Stau1 may be a key process involved in lung cancer progression.


2020 ◽  
Author(s):  
Tapas Pradhan ◽  
Vikas Kumar ◽  
H Evangeline Surya ◽  
R Krishna ◽  
Samu John ◽  
...  

AbstractDiscovery of potent gene regulating tumorigenesis and drug resistance is of high clinical importance. STIL is an oncogene, however its molecular insights and role in colorectal oncogenesis are unknown. In this study we have explored role of STIL in tumorigenesis and studied its molecular targets in colorectal cancer (CRC). STIL silencing reduced proliferation and tumor growth in CRC. Further, STIL was found to regulate stemness markers CD133 & CD44 and drug resistant markers Thymidylate synthase, ABCB1 & ABCG2 both in in-vitro and in-vivo CRC models. In addition, over expression of STIL mRNA was found to be associated with reduced disease free survival in CRC cases. To our surprise we observed an Shh independent regulation of stemness and drug resistant genes mediated by STIL. Interestingly, we found an Shh independent regulation of β-catenin mediated by STIL via p-AKT, which partially answers Shh independent regulatory mechanism of CSC markers by STIL. Our study suggest an instrumental role of STIL in molecular manifestation of CRC and progression.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Bijaya Pant ◽  
Pusp Raj Joshi ◽  
Sabitri Maharjan ◽  
Laxmi Sen Thakuri ◽  
Shreeti Pradhan ◽  
...  

From the medicinal orchid Dendrobium chryseum Rolfe, which is used in traditional and folk Chinese medicine, the protocorms were raised in Murashige and Skoog (MS) media in three strengths, full strength (FMS), half strength (1/2 MS), and quarter strength (1/4 MS), with or without the phytohormones 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) and coconut water (CW). The comparative cytotoxic activities of the wild and in vitro-raised protocorms were evaluated in human cervical carcinoma (HeLa) and human glioblastoma (U251) cell lines by MTT assay. In in vivo and in vitro, the methanol extracts of D. chryseum showed significant cytotoxic activities. Significant growth inhibition (%) and potent IC50 values were demonstrated in HeLa cell lines (49.79% (210.5 μg/mL) for in vitro-raised Dendrobium chryseum (DCT) versus 46.97% (226.5 μg/mL) for wild Dendrobium chryseum (DCW)). Similarly, activities against U251 cell lines exhibited also significant inhibition (28.76% (612.54 μg/mL) for DCW and 17.15% (1059.92 μg/mL) for DCT). The cytotoxic activities of both, wild and tissue-cultured samples, were superior in HeLa cells. In U251 cells, the wild sample was more active than the tissue-cultured one with a moderate cytotoxic effect. Hence, protocorm culture may therefore be a promising future tool for producing pharmacologically bioactive compounds in medicinal orchids. Such sustainable technology approach will minimize the pressure on the natural population of threatened but commercially important medicinal orchids.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 817
Author(s):  
Mehreen Ishfaq ◽  
Timothy Pham ◽  
Cooper Beaman ◽  
Pablo Tamayo ◽  
Alice L. Yu ◽  
...  

MDSCs are immune cells of myeloid lineage that plays a key role in promoting tumor growth. The expansion of MDSCs in tumor-bearing hosts reduces the efficacy of checkpoint inhibitors and CAR-T therapies, and hence strategies that deplete or block the recruitment of MDSCs have shown benefit in improving responses to immunotherapy in various cancers, including NB. Ibrutinib, an irreversible molecular inhibitor of BTK, has been widely studied in B cell malignancies, and recently, this drug is repurposed for the treatment of solid tumors. Herein we report that BTK is highly expressed in both granulocytic and monocytic murine MDSCs isolated from mice bearing NB tumors, and its increased expression correlates with a poor relapse-free survival probability of NB patients. Moreover, in vitro treatment of murine MDSCs with ibrutinib altered NO production, decreased mRNA expression of Ido, Arg, Tgfβ, and displayed defects in T-cell suppression. Consistent with these findings, in vivo inhibition of BTK with ibrutinib resulted in reduced MDSC-mediated immune suppression, increased CD8+ T cell infiltration, decreased tumor growth, and improved response to anti-PDL1 checkpoint inhibitor therapy in a murine model of NB. These results demonstrate that ibrutinib modulates immunosuppressive functions of MDSC and can be used either alone or in combination with immunotherapy for augmenting antitumor immune responses in NB.


Sign in / Sign up

Export Citation Format

Share Document