Abstract 389: The dual mTOR inhibitor, AZD2014, and castration increase intra-tumoral immune cell infiltration and anti-tumour activity in a genetically engineered mouse model of prostate cancer

Author(s):  
Chiranjeevi Sandi ◽  
Antonio Ramos-Montoya ◽  
Sergio L. Filisbino ◽  
Adina Hughes ◽  
Suzanne Mosely ◽  
...  
2020 ◽  
Author(s):  
Jukun Song ◽  
Song He ◽  
Wei Wang ◽  
Jiaming Su ◽  
Dongbo Yuan ◽  
...  

Abstract Background Immune infiltration of Prostate cancer (PCa) was highly related to clinical outcomes. However, previous works failed to elucidate the diversity of different immune cell types that make up the function of the immune response system. The aim of the study was to uncover the composition of TIICs in PCa utilizing the CIBERSORT algorithm and further reveal the molecular characteristics of PCa subtypes. Method In the present work, we employed the CIBERSORT method to evaluate the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We analyzed the correlation between immune cell infiltration and clinical information. The tumor-infiltrating immune cells of the TCGA PCa cohort were analyzed for the first time. The fractions of 22 immune cell types were imputed to determine the correlation between each immune cell subpopulation and clinical feature. Three types of molecular classification were identified via R-package of “CancerSubtypes”. The functional enrichment was analyzed in each subtype. The submap and TIDE algorithm were used to predict the clinical response to immune checkpoint blockade, and GDSC was employed to screen chemotherapeutic targets for the potential treatment of PCa. Results In current work, we utilized the CIBERSORT algorithm to assess the relative proportions of immune cell profiling in PCa and adjacent samples, normal samples. We investigated the correlation between immune cell infiltration and clinical data. The tumor-infiltrating immune cells in the TCGA PCa cohort were analyzed. The 22 immune cells were also calculated to determine the correlation between each immune cell subpopulation and survival and response to chemotherapy. Three types of molecular classification were identified. Each subtype has specific molecular and clinical characteristics. Meanwhile, Cluster I is defined as advanced PCa, and is more likely to respond to immunotherapy. Conclusions Our results demonstrated that differences in immune response may be important drivers of PCa progression and response to treatment. The deconvolution algorithm of gene expression microarray data by CIBERSOFT provides useful information about the immune cell composition of PCa patients. In addition, we have found a subtype of immunopositive PCa subtype and will help to explore the reasons for the poor effect of PCa on immunotherapy, and it is expected that immunotherapy will be used to guide the individualized management and treatment of PCa patients.


Author(s):  
Naoya Miyashita ◽  
Masafumi Horie ◽  
Yu Mikami ◽  
Hirokazu Urushiyama ◽  
Kensuke Fukuda ◽  
...  

2009 ◽  
Vol 348 (1-2) ◽  
pp. 9-17 ◽  
Author(s):  
Philippe O. Gannon ◽  
Alexis O. Poisson ◽  
Nathalie Delvoye ◽  
Réjean Lapointe ◽  
Anne-Marie Mes-Masson ◽  
...  

PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25132 ◽  
Author(s):  
Jatin Roper ◽  
Michael P. Richardson ◽  
Wei Vivian Wang ◽  
Larissa Georgeon Richard ◽  
Wei Chen ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A963-A963
Author(s):  
Alexandra Cabanov ◽  
Stefani Spranger ◽  
Thomas Gajewski ◽  
Alexandra Cabanov ◽  
Elen Torres-Mejia

BackgroundLack of response to checkpoint blockade immunotherapy has been linked to a deficiency of immune cell infiltration within the tumor microenvironment (TME). One demonstrated mechanism sufficient for the non-T cell inflamed TME is tumor cell-intrinsic activation of the β-catenin signaling pathway. Using genetically engineered mouse models (GEMMs), tumors constitutively expressing active β-catenin lack a robust endogenous T cell infiltrate and fail to respond to immunotherapies. In support of these mouse studies, human melanoma metastases with increased active β-catenin signaling exhibit decreased numbers of tumor infiltrating Batf3-driven cDC1 and CD3+ T cells. However, whether temporal activation and inactivation of β-catenin within the same developing tumor would alter immune cell infiltration is not known.MethodsA model was created in which tamoxifen-regulated Cre-recombinase mediates BRAFV600E oncogene activation and PTEN tumor suppressor gene deletion as well as expression of a doxycycline regulatable reverse transactivator. Upon administration of doxycycline via the drinking water to these animals, a non-degradable form of nuclear β-catenin becomes expressed. Immunofluorescence assays were performed assessing the β-catenin expression status in the tumor cells as well as immune cell infiltration within the TME. Additionally, immunotherapy efficacy experiments were performed.ResultsWe observed that administration of doxycycline to these animals drove expression of an active form of nuclear β-catenin. Activation of nuclear β-catenin resulted in a 2-fold decrease in the overall CD3+ T cells infiltration into the TME. Moreover, this decrease in immune infiltration also resulted in loss of anti-PD-L1 + anti-CTLA-4 therapy efficacy. We next performed studies assessing the kinetics with which β-catenin levels diminish upon doxycycline removal. Switching animals to regular drinking water resulted in rapid reduction of nuclear β-catenin levels, including 50 percent reduction after two days of doxycycline removal and almost complete reduction of nuclear β-catenin after four days.ConclusionsWe describe a novel mouse model in which we induce autochthonous melanoma tumors in mice along with inducible expression of a non-degradable, nuclear β-catenin modulated by doxycycline in the drinking water. Activation of β-catenin signaling in melanoma tumors resulted in reduction of immune cells in the TME as well as loss of checkpoint blockade immunotherapy efficacy. This activation can be rapidly reversed by removing doxycycline, allowing for future studies evaluating the consequences of turning off β-catenin once it has already driven a non-T cell-inflamed TME.AcknowledgementsThis work was supported by the Wissler Fellowship from the University of Chicago (SS) K99/R00 (NCI; SS), and R35CA210098 (TG).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yunkun Yan ◽  
Jianjun Liu ◽  
Zhijian Xu ◽  
Mushi Ye ◽  
Jianchang Li

Objective. To investigate the relationship between the long noncoding RNA (lncRNA) Prostate cancer-associated transcription factors 14 (PCAT14) and the clinical characteristics of prostate cancer and immune cell infiltration. Methods. The relationship between PCAT14 expression and the clinicopathological characteristics of prostate cancer was analyzed based on The Cancer Genome Atlas (TCGA) database. Receiver operating characteristic (ROC) curves were used to evaluate the value of PCAT14 as a diagnostic marker for prostate cancer. The relationship between PCAT14 and immune cell infiltration was analyzed to explore the effect of PCAT14 on the immune-related functions of prostate cancer. Results. The ROC curve showed that PCAT14 had a significant diagnostic ability ( area   under   curve = 0.818 ) for prostate cancer. A reduced expression of PCAT14 in prostate cancer was related to T stage, N stage, primary therapy outcome, residual tumor, Gleason score, and age. The expression of PCAT14 was independently associated with the progression-free interval in prostate cancer patients. The infiltration of immune cells in prostate cancer showed a significant negative correlation between the expression of PCAT14 and plasmacytoid dendritic cells, activated dendritic cells, regulatory T cells, and neutrophils. Conclusions. PCAT14 is highly expressed in prostate cancer and is expected to be a diagnostic marker. PCAT14 might promote the development of prostate cancer through chemokines, antimicrobials, and cytokines that affect the infiltration of immune cells.


Sign in / Sign up

Export Citation Format

Share Document