Abstract 317: Vecabrutinib inhibits C481 mutated Bruton's tyrosine kinase and its downstream signaling in vitro

Author(s):  
Burcu Aslan ◽  
Mikhila Mahendra ◽  
Michael D Peoples ◽  
Joe R. Marszalek ◽  
Christopher P Vellano ◽  
...  
Author(s):  
Burcu Aslan ◽  
Mikhila Mahendra ◽  
Michael D Peoples ◽  
Joe R. Marszalek ◽  
Christopher P Vellano ◽  
...  

2014 ◽  
Vol 307 (6) ◽  
pp. L435-L448 ◽  
Author(s):  
Agnieszka Krupa ◽  
Marek Fol ◽  
Moshiur Rahman ◽  
Karen Y. Stokes ◽  
Jon M. Florence ◽  
...  

Previous observations made by our laboratory indicate that Bruton's tyrosine kinase (Btk) may play an important role in the pathophysiology of local inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). We have shown that there is cross talk between FcγRIIa and TLR4 in alveolar neutrophils from patients with ALI/ARDS and that Btk mediates the molecular cooperation between these two receptors. To study the function of Btk in vivo we have developed a unique two-hit model of ALI: LPS/immune complex (IC)-induced ALI. Furthermore, we conjugated F(ab)2 fragments of anti-neutrophil antibodies (Ly6G1A8) with specific siRNA for Btk to silence Btk specifically in alveolar neutrophils. It should be stressed that we are the first group to perform noninvasive transfections of neutrophils, both in vitro and in vivo. Importantly, our present findings indicate that silencing Btk in alveolar neutrophils has a dramatic protective effect in mice with LPS/IC-induced ALI, and that Btk regulates neutrophil survival and clearance of apoptotic neutrophils in this model. In conclusion, we put forward a hypothesis that Btk-targeted neutrophil specific therapy is a valid goal of research geared toward restoring homeostasis in lungs of patients with ALI/ARDS.


2015 ◽  
Vol 13 (18) ◽  
pp. 5147-5157 ◽  
Author(s):  
Nora Liu ◽  
Sascha Hoogendoorn ◽  
Bas van de Kar ◽  
Allard Kaptein ◽  
Tjeerd Barf ◽  
...  

Direct and two-step activity-based probes allow for profiling of Bruton's tyrosine kinase in vitro and in situ.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3731
Author(s):  
Anselm Morell ◽  
Lucie Čermáková ◽  
Eva Novotná ◽  
Lenka Laštovičková ◽  
Melodie Haddad ◽  
...  

Over the last few years, aldo-keto reductase family 1 member C3 (AKR1C3) has been associated with the emergence of multidrug resistance (MDR), thereby hindering chemotherapy against cancer. In particular, impaired efficacy of the gold standards of induction therapy in acute myeloid leukaemia (AML) has been correlated with AKR1C3 expression, as this enzyme metabolises several drugs including anthracyclines. Therefore, the development of selective AKR1C3 inhibitors may help to overcome chemoresistance in clinical practice. In this regard, we demonstrated that Bruton’s tyrosine kinase (BTK) inhibitors ibrutinib and acalabrutinib efficiently prevented daunorubicin (Dau) inactivation mediated by AKR1C3 in both its recombinant form as well as during its overexpression in cancer cells. This revealed a synergistic effect of BTK inhibitors on Dau cytotoxicity in cancer cells expressing AKR1C3 both exogenously and endogenously, thus reverting anthracycline resistance in vitro. These findings suggest that BTK inhibitors have a novel off-target action, which can be exploited against leukaemia through combination regimens with standard chemotherapeutics like anthracyclines.


Blood ◽  
2014 ◽  
Vol 123 (8) ◽  
pp. 1229-1238 ◽  
Author(s):  
Stuart A. Rushworth ◽  
Megan Y. Murray ◽  
Lyubov Zaitseva ◽  
Kristian M. Bowles ◽  
David J. MacEwan

Key Points Inhibition of Bruton’s tyrosine kinase is as effective in vitro against AML as chronic lymphocytic leukemia. Ibrutinib shows activity in AML because Bruton’s tyrosine kinase is constitutively active.


2016 ◽  
Vol 310 (5) ◽  
pp. C373-C380 ◽  
Author(s):  
Rachel A. Rigg ◽  
Joseph E. Aslan ◽  
Laura D. Healy ◽  
Michael Wallisch ◽  
Marisa L. D. Thierheimer ◽  
...  

The Tec family kinase Bruton's tyrosine kinase (Btk) plays an important signaling role downstream of immunoreceptor tyrosine-based activation motifs in hematopoietic cells. Mutations in Btk are involved in impaired B-cell maturation in X-linked agammaglobulinemia, and Btk has been investigated for its role in platelet activation via activation of the effector protein phospholipase Cγ2 downstream of the platelet membrane glycoprotein VI (GPVI). Because of its role in hematopoietic cell signaling, Btk has become a target in the treatment of chronic lymphocytic leukemia and mantle cell lymphoma; the covalent Btk inhibitor ibrutinib was recently approved by the US Food and Drug Administration for treatment of these conditions. Antihemostatic events have been reported in some patients taking ibrutinib, although the mechanism of these events remains unknown. We sought to determine the effects of Btk inhibition on platelet function in a series of in vitro studies of platelet activation, spreading, and aggregation. Our results show that irreversible inhibition of Btk with two ibrutinib analogs in vitro decreased human platelet activation, phosphorylation of Btk, P-selectin exposure, spreading on fibrinogen, and aggregation under shear flow conditions. Short-term studies of ibrutinib analogs administered in vivo also showed abrogation of platelet aggregation in vitro, but without measurable effects on plasma clotting times or on bleeding in vivo. Taken together, our results suggest that inhibition of Btk significantly decreased GPVI-mediated platelet activation, spreading, and aggregation in vitro; however, prolonged bleeding was not observed in a model of bleeding.


2020 ◽  
Vol 5 (2) ◽  
pp. 123-133
Author(s):  
Elodie Martin ◽  
Marie-Stéphane Aigrot ◽  
Roland Grenningloh ◽  
Bruno Stankoff ◽  
Catherine Lubetzki ◽  
...  

Background: Microglia are the resident macrophages of the central nervous system (CNS). In multiple sclerosis (MS) and related experimental models, microglia have either a pro-inflammatory or a pro-regenerative/pro-remyelinating function. Inhibition of Bruton’s tyrosine kinase (BTK), a member of the Tec family of kinases, has been shown to block differentiation of pro-inflammatory macrophages in response to granulocyte–macrophage colony-stimulating factor in vitro. However, the role of BTK in the CNS is unknown. Methods: Our aim was to investigate the effect of BTK inhibition on myelin repair in ex vivo and in vivo experimental models of demyelination and remyelination. The remyelination effect of a BTK inhibitor (BTKi; BTKi-1) was then investigated in LPC-induced demyelinated cerebellar organotypic slice cultures and metronidazole-induced demyelinated Xenopus MBP-GFP-NTR transgenic tadpoles. Results: Cellular detection of BTK and its activated form BTK-phospho-Y223 (p-BTK) was determined by immunohistochemistry in organotypic cerebellar slice cultures, before and after lysophosphatidylcholine (LPC)-induced demyelination. A low BTK signal detected by immunolabeling under normal conditions in cerebellar slices was in sharp contrast to an 8.5-fold increase in the number of BTK-positive cells observed in LPC-demyelinated slice cultures. Under both conditions, approximately 75% of cells expressing BTK and p-BTK were microglia and 25% were astrocytes. Compared with spontaneous recovery, treatment of demyelinated slice cultures and MTZ-demyelinated transgenic tadpoles with BTKi resulted in at least a 1.7-fold improvement of remyelination. Conclusion: Our data demonstrate that BTK inhibition is a promising therapeutic strategy for myelin repair.


Author(s):  
Stefan F. H. Neys ◽  
Rudi W. Hendriks ◽  
Odilia B. J. Corneth

Bruton’s tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK’s function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.


Sign in / Sign up

Export Citation Format

Share Document