Abstract 2568: Characterization of metabolic changes induced by anti-cancer drugs in MCF7 and MDA-MB-231 cell lines

Author(s):  
David L. Hoffman ◽  
Michael Pisano
2020 ◽  
Vol 20 (8) ◽  
pp. 1017-1027
Author(s):  
Abdul M. Baig ◽  
Zohaib Rana ◽  
Mohammad M. Mannan ◽  
Areeba Khaleeq ◽  
Fizza Nazim ◽  
...  

Background: Targeting evolutionarily conserved proteins in malignant cells and the adapter proteins involved in signalling that generates from such proteins may play a cardinal role in the selection of anti-cancer drugs. Drugs targeting these proteins could be of importance in developing anti-cancer drugs. Objectives: We inferred that drugs like loperamide and promethazine that act as antagonists of proteins conserved in cancer cells like voltage-gated Calcium channels (Cav), Calmodulin (CaM) and drug efflux (ABCB1) pump may have the potential to be re-purposed as an anti-cancer agent in Prostate Cancer (PCa). Methods: Growth and cytotoxic assays were performed by selecting loperamide and promethazine to target Cav, CaM and drug efflux (ABCB1) pumps to elucidate their effects on androgen-independent PC3 and DU145 PCa cell lines. Results: We show that loperamide and promethazine in doses of 80-100μg/ml exert oncocidal effects when tested in DU145 and PC3 cell lines. Diphenhydramine, which shares its targets with promethazine, except the CaM, failed to exhibit oncocidal effects. Conclusion: Anti-cancer effects can be of significance if structural analogues of loperamide and promethazine that specifically target Cav, CaM and ABCB1 drug efflux pumps can be synthesized, or these two drugs could be re-purposed after human trials in PCa.


2014 ◽  
Vol 44 (7) ◽  
pp. 485-491 ◽  
Author(s):  
Bijay Kumar Poudel ◽  
Roshan Pradhan ◽  
Biki Gupta ◽  
Ju Yeon Choi ◽  
Chul Soon Yong ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A661
Author(s):  
Alexande Arit ◽  
Jens Vomdamm ◽  
Hongang Yu ◽  
Wolfgang E. Schmidt ◽  
Ulrich R. Foelsch ◽  
...  

2017 ◽  
Vol 35 (4_suppl) ◽  
pp. 642-642 ◽  
Author(s):  
Jan Stenvang ◽  
Christine Hjorth Andreassen ◽  
Nils Brünner

642 Background: In metastatic colorectal cancer (mCRC) only 3 cytotoxic drugs (oxaliplatin, irinotecan and fluorouracil (5-FU)) are approved and the first and second line response rates are about 50% and 10-15%, respectively. Thus, new treatment options are needed. Novel anti-cancer drug candidates are primarily tested in an environment of drug resistance and the majority of novel drug candidates fail during clinical development. Therefore, “repurposing” of drugs has emerged as a promising strategy to apply established drugs in novel indications. The aim of this project was to screen established anti-cancer drugs to identify candidates for testing in mCRC patients relapsing on standard therapy. Methods: We applied 3 parental (drug sensitive) CRC cell lines (HCT116, HT29 and LoVo) and for each cell line also an oxaliplatin and irinotecan (SN38) resistant cell line. We obtained 129 FDA approved anti-cancer drugs from the Developmental Therapeutics Program (DTP) at the National Cancer Institute (NCI) ( https://dtp.cancer.gov/ ). The parental HT29 cell line and the drug resistant sublines HT29-SN38 and HT29-OXPT were exposed to 3 concentrations of each of the anti-cancer drugs. The effect on cell viability was analyzed by MTT assays. Nine of the drugs were analyzed for effect in the LoVo and HCT116 and the SN38- and oxaliplatin-resistant derived cell lines. Results: None of the drugs caused evident differential response between the resistant and sensitive cells or between the SN38 and oxaliplatin resistant cells. The screening confirmed the resistance as the cells displayed resistance to drugs in the same class as the one they were made resistant to. Of the drugs, 45 decreased cell viability in the HT29 parental and oxaliplatin- or SN-38 resistant cell lines. Nine drugs were tested in all nine CRC cell lines and eight decrease cell viability in the nine cell lines. These included drugs in different classes such as epigenetic drugs, antibiotics, mitotic inhibitors and targeted therapies. Conclusions: This study revealed several possible new “repurposing” drugs for CRC therapy, by showing that 45 FDA-approved anti-cancer drugs decrease cell viability in CRC cell lines with acquired drug resistance.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3361 ◽  
Author(s):  
Teresa Glomb ◽  
Karolina Szymankiewicz ◽  
Piotr Świątek

Compounds containing 1,3,4-oxadiazole ring in their structure are characterised by multidirectional biological activity. Their anti-proliferative effects associated with various mechanisms, such as inhibition of growth factors, enzymes, kinases and others, deserve attention. The activity of these compounds was tested on cell lines of various cancers. In most publications, the most active derivatives of 1,3,4-oxadiazole exceeded the effect of reference drugs, so they may become the main new anti-cancer drugs in the future.


2021 ◽  
Author(s):  
Ming Hua Ge ◽  
Xu Hang Zhu ◽  
Yi Ming Shao ◽  
Chao Wang ◽  
Ping Huang ◽  
...  

CD133 targeted aptamer–drug conjugates could precisely deliver anti-cancer drugs into CD133 positive anaplastic thyroid cancer tissue.


Sign in / Sign up

Export Citation Format

Share Document