Abstract PO-110: Targeting cathepsin B in the pancreatic stellate cells stimulates CD8+ T cell dependent anti-tumor immune response

Author(s):  
Bharti Garg ◽  
Tejeshwar Jain ◽  
Utpreksha Vaish ◽  
Vikas Dudeja
2021 ◽  
Author(s):  
Daniel S Krauth ◽  
Christina M Jamros ◽  
Shayna C Rivard ◽  
Niels H Olson ◽  
Ryan C Maves

ABSTRACT We describe a patient with subclinical coccidioidomycosis who experienced rapid disease dissemination shortly after SARS-CoV-2 infection, suggesting host immune response dysregulation to coccidioidomycosis by SARS-CoV-2. We hypothesize that disrupted cell-mediated signaling may result after SARS-CoV-2 infection leading to functional exhaustion and CD8+ T-cell senescence with impairment in host cellular response to Coccidioides infection.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 606
Author(s):  
Giuseppe Cappellano ◽  
Hugo Abreu ◽  
Chiara Casale ◽  
Umberto Dianzani ◽  
Annalisa Chiocchetti

The first vaccines ever made were based on live-attenuated or inactivated pathogens, either whole cells or fragments. Although these vaccines required the co-administration of antigens with adjuvants to induce a strong humoral response, they could only elicit a poor CD8+ T-cell response. In contrast, next-generation nano/microparticle-based vaccines offer several advantages over traditional ones because they can induce a more potent CD8+ T-cell response and, at the same time, are ideal carriers for proteins, adjuvants, and nucleic acids. The fact that these nanocarriers can be loaded with molecules able to modulate the immune response by inducing different effector functions and regulatory activities makes them ideal tools for inverse vaccination, whose goal is to shut down the immune response in autoimmune diseases. Poly (lactic-co-glycolic acid) (PLGA) and liposomes are biocompatible materials approved by the Food and Drug Administration (FDA) for clinical use and are, therefore, suitable for nanoparticle-based vaccines. Recently, another candidate platform for innovative vaccines based on extracellular vesicles (EVs) has been shown to efficiently co-deliver antigens and adjuvants. This review will discuss the potential use of PLGA-NPs, liposomes, and EVs as carriers of peptides, adjuvants, mRNA, and DNA for the development of next-generation vaccines against endemic and emerging viruses in light of the recent COVID-19 pandemic.


Hepatology ◽  
2011 ◽  
Vol 54 (1) ◽  
pp. 262-272 ◽  
Author(s):  
Frank A. Schildberg ◽  
Alexandra Wojtalla ◽  
Sören V. Siegmund ◽  
Elmar Endl ◽  
Linda Diehl ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 461
Author(s):  
Jenifer Sanchez ◽  
Ian Jackson ◽  
Katie R. Flaherty ◽  
Tamara Muliaditan ◽  
Anna Schurich

Upon activation T cells engage glucose metabolism to fuel the costly effector functions needed for a robust immune response. Consequently, the availability of glucose can impact on T cell function. The glucose concentrations used in conventional culture media and common metabolic assays are often artificially high, representing hyperglycaemic levels rarely present in vivo. We show here that reducing glucose concentration to physiological levels in culture differentially impacted on virus-specific compared to generically activated human CD8 T cell responses. In virus-specific T cells, limiting glucose availability significantly reduced the frequency of effector-cytokine producing T cells, but promoted the upregulation of CD69 and CD103 associated with an increased capacity for tissue retention. In contrast the functionality of generically activated T cells was largely unaffected and these showed reduced differentiation towards a residency phenotype. Furthermore, T cells being cultured at physiological glucose concentrations were more susceptible to viral infection. This setting resulted in significantly improved lentiviral transduction rates of primary cells. Our data suggest that CD8 T cells are exquisitely adapted to their niche and provide a reminder of the need to better mimic physiological conditions to study the complex nature of the human CD8 T cell immune response.


2020 ◽  
Vol 26 (6) ◽  
pp. 570-574
Author(s):  
Mizue Tsuyuzaki ◽  
Hidetoshi Igari ◽  
Nao Okada ◽  
Kiminori Suzuki

Pancreatology ◽  
2013 ◽  
Vol 13 (2) ◽  
pp. e39
Author(s):  
K. Jiang ◽  
D. Tang ◽  
Z. Yuan ◽  
Z. Lu ◽  
Y. Miao

PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58309 ◽  
Author(s):  
Rebecca Axelsson-Robertson ◽  
André G. Loxton ◽  
Gerhard Walzl ◽  
Marthie M. Ehlers ◽  
Marleen M. Kock ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5030-5030
Author(s):  
Avital Amir ◽  
Renate S. Hagendoorn ◽  
Erik W.A. Marijt ◽  
Roelof Willemze ◽  
J.H. Frederik Falkenburg ◽  
...  

Abstract Single HLA locus mismatched stem cell transplantation (SCT) is applied in patients with hematological malignancies who may benefit from allogeneic transplantation but lack an HLA-matched donor. Although HLA disparity between patient and donor increases the risk of developing GVHD, the relative risk of GVHD after single HLA locus mismatched SCT is only 1.5 fold. In view of the high frequency of allo-HLA reactive T-cells, which is about 1000-fold higher than the frequencies of minor histocompatibility antigen specific T-cells, this risk increase is lower than could be expected. Since almost all nucleated cells express HLA class I, one would expect all single HLA class I mismatched transplanted patients to develop severe GVHD. We hypothesized therefore that the presentation of the HLA class I mismatched allele on nucleated cells of the patient is not sufficient to elicit an effective allo-immune response. We characterized the allo-immune response in a patient with acute myeloid leukemia (AML) who was treated with a T-cell depleted SCT from a sibling donor who was HLA identical except for an HLA-A2 crossover. Six months after SCT, donor lymphocyte infusion (DLI) of 2.5*10e6 T-cells/kg was given for mixed chimerism comprising 99% T-cells of patient origin. No clinical response and no GVHD developed. Twelve months after SCT 95% of T-cells were still of patient origin, and AML relapse occurred with 9% blasts in bone marrow for which a second DLI containing 7.5*10e6 T-cells/kg was given. Five weeks after the DLI the patient died of grade IV GVHD. During the GVHD, conversion to donor chimerism developed. In peripheral blood of the patient 90% of CD8 and 40% of CD4 donor T-cells were activated as determined by HLA-DR expression. To analyze the nature of the immune response, the activated CD8 and CD4 donor T-cells were single cell sorted, expanded and tested for alloreactivity and HLA restriction using cytotoxicity and cytokine production assays against a panel of target cells blocked with different HLA-mAbs. 82% of the CD8 T-cell clones were alloreactive and restricted to the allo-HLA-A2. The response was highly polyclonal as shown by the usage of different T-cell receptor Vβ chains with different CDR3 sequences. 26% of the CD4 clones were alloreactive and this response was also polyclonal. The CD4 clones were HLA-DR1 restricted and recognized donor EBV-LCL transduced with HLA-A2, indicating that the peptide recognized in HLA-DR1 was derived from the mismatched HLA-A2 molecule. The recognized epitope was demonstrated to comprise AA 103–120 derived from a hypervariable region of HLA-A2. At the time of the first DLI, only HLA class I expressing T-cells and non-hematopoietic patient derived cells were present, capable of activating the CD8 T-cells but not of triggering the CD4 response. Leukemic blasts present at the time of the second DLI, however, expressed both HLA-DR and HLA class I, and were shown to activate the CD4 as well as the CD8 clones. We hypothesize that the HLA class II expression on hematopoietic cells of the patient at the time of the relapse was essential for the development of this immune response. In conclusion, these results indicate a role for patient leukemic blasts acting as host APCs in initiating the GVH response by activating both a CD4 and CD8 T-cell response in an HLA class I mismatched setting.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p<0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p<0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


2013 ◽  
Vol 20 ◽  
pp. 34-34
Author(s):  
H Kefalakes ◽  
C Jochum ◽  
G Hilgard ◽  
A Kahraman ◽  
A Bohrer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document