Abstract PO-011: Role of tumor heterogeneity, tumor microenvironment and tumor initiating cell in gastric carcinogenesis from the perspective of development of hypothesis for its clinical application

Author(s):  
Kalyan Kusum Mukherjee ◽  
Dattatreya Mukherjee
Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3716
Author(s):  
Ralf Hass ◽  
Juliane von der Ohe ◽  
Hendrik Ungefroren

Tumor heterogeneity is considered the major cause of treatment failure in current cancer therapies. This feature of solid tumors is not only the result of clonal outgrowth of cells with genetic mutations, but also of epigenetic alterations induced by physical and chemical signals from the tumor microenvironment (TME). Besides fibroblasts, endothelial and immune cells, mesenchymal stroma/stem-like cells (MSCs) and tumor-associated macrophages (TAMs) intimately crosstalk with cancer cells and can exhibit both anti- and pro-tumorigenic effects. MSCs can alter cancer cellular phenotypes to increase cancer cell plasticity, eventually resulting in the generation of cancer stem cells (CSCs). The shift between different phenotypic states (phenotype switching) of CSCs is controlled via both genetic programs, such as epithelial-mesenchymal transdifferentiation or retrodifferentiation, and epigenetic alterations triggered by signals from the TME, like hypoxia, spatial heterogeneity or stromal cell-derived chemokines. Finally, we highlight the role of spontaneous cancer cell fusion with various types of stromal cells. i.e., MSCs in shaping CSC plasticity. A better understanding of cell plasticity and phenotype shifting in CSCs is a prerequisite for exploiting this phenomenon to reduce tumor heterogeneity, thereby improving the chance for therapy success.


2020 ◽  
Vol 20 ◽  
Author(s):  
Nilesh Kumar Sharma ◽  
Jayanta K. Pal

: Tumor heterogeneity is influenced by various factors including genetic, epigenetic and axis of metabolic-epigenomic regulation. In recent, metabolic-epigenomic reprogramming is considered as one of many tumor hallmarks and it appears to be driven by both microenvironment and macroenvironment factors including diet, microbiotas and environmental pressures. Epigenetically, histone lysine residues are altered by various post-translational modifications (PTMs) such as acetylation, acylation, methylation and lactylation. Furthermore, lactylation is suggested as a new form of PTM that uses lactate substrate as a metabolic ink for epigenetic writer enzyme that remodel histone proteins. Therefore, preclinical and clinical attempts are warranted to disrupt pathway of metabolic-epigenomic reprogramming that will turn pro-tumor microenvironment into antitumor microenvironment. This paper highlights the metabolic-epigenomic regulation events including lactylation and its metabolic substrate lactate in tumor microenvironment.


Author(s):  
Ki-Baik Hahm ◽  
Ho-Yeong Lim ◽  
Seonghyang Sohn ◽  
Hyuk-Jae Kwon ◽  
Ki-Myung Lee ◽  
...  
Keyword(s):  

Author(s):  
Hariharan Jayaraman ◽  
Nalinkanth V. Ghone ◽  
Ranjith Kumaran R ◽  
Himanshu Dashora

: Mesenchymal stem cells because of its high proliferation, differentiation, regenerative capacity, and ease of availability have been a popular choice in cytotherapy. Mesenchymal Stem Cells (MSCs) have a natural tendency to home in a tumor microenvironment and acts against it, owing to the similarity of the latter to an injured tissue environment. Several studies have confirmed the recruitment of MSCs by tumor through various cytokine signaling that brings about phenotypic changes to cancer cells, thereby promoting migration, invasion, and adhesion of cancer cells. The contrasting results on MSCs as a tool for cancer cytotherapy may be due to the complex cell to cell interaction in the tumor microenvironment, which involves various cell types such as cancer cells, immune cells, endothelial cells, and cancer stem cells. Cell to cell communication can be simple or complex and it is transmitted through various cytokines among multiple cell phenotypes, mechano-elasticity of the extra-cellular matrix surrounding the cancer cells, and hypoxic environments. In this article, the role of the extra-cellular matrix proteins and soluble mediators that acts as communicators between mesenchymal stem cells and cancer cells has been reviewed specifically for breast cancer, as it is the leading member of cancer malignancies. The comprehensive information may be beneficial in finding a new combinatorial cytotherapeutic strategy using MSCs by exploiting the cross-talk between mesenchymal stem cells and cancer cells for treating breast cancer.


2020 ◽  
Vol 15 (7) ◽  
pp. 588-596
Author(s):  
Haibao Zhang ◽  
Guodong Zhu

Renal cell carcinoma (RCC) is one of the common urologic neoplasms, and its incidence has been increasing over the past several decades; however, its pathogenesis is still unknown up to now. Recent studies have found that in addition to tumor cells, other cells in the tumor microenvironment also affect the biological behavior of the tumor. Among them, macrophages exist in a large amount in tumor microenvironment, and they are generally considered to play a key role in promoting tumorigenesis. Therefore, we summarized the recent researches on macrophage in the invasiveness and progression of RCC in latest years, and we also introduced and discussed many studies about macrophage in RCC to promote angiogenesis by changing tumor microenvironment and inhibit immune response in order to activate tumor progression. Moreover, macrophage interactes with various cytokines to promote tumor proliferation, invasion and metastasis, and it also promotes tumor stem cell formation and induces drug resistance in the progression of RCC. The highlight of this review is to make a summary of the roles of macrophage in the invasion and progression of RCC; at the same time to raise some potential and possible targets for future RCC therapy.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Areeg Elmusrati ◽  
Justin Wang ◽  
Cun-Yu Wang

AbstractHead and neck squamous cell carcinoma (HNSCC), an aggressive malignancy, is characterized by high morbidity and low survival rates with limited therapeutic options outside of regional surgery, conventional cytotoxic chemotherapy, and irradiation. Increasing studies have supported the synergistic role of the tumor microenvironment (TME) in cancer advancement. The immune system, in particular, plays a key role in surveillance against the initiation, development, and progression of HNSCC. The understanding of how neoplastic cells evolve and evade the immune system whether through self-immunogenicity manipulation, or expression of immunosuppressive mediators, provides the foundation for the development of advanced therapies. Furthermore, the crosstalk between cancer cells and the host immune system have a detrimental effect on the TME promoting angiogenesis, proliferation, and metastasis. This review provides a recent insight into the role of the key inflammatory cells infiltrating the TME, with a focus on reviewing immunological principles related to HNSCC, as cancer immunosurveillance and immune escape, including a brief overview of current immunotherapeutic strategies and ongoing clinical trials.


Sign in / Sign up

Export Citation Format

Share Document