Fluorofenidone Attenuates Tubulointerstitial Fibrosis by Inhibiting TGF-β1-Induced Fibroblast Activation

2011 ◽  
Vol 34 (2) ◽  
pp. 181-194 ◽  
Author(s):  
Qiongjing Yuan ◽  
Rui Wang ◽  
Yu Peng ◽  
Xiao Fu ◽  
Wei Wang ◽  
...  
2017 ◽  
Vol 312 (4) ◽  
pp. F760-F768 ◽  
Author(s):  
Chen Ye ◽  
Hui Tang ◽  
Zheng Zhao ◽  
Chun-Tao Lei ◽  
Chao-Qun You ◽  
...  

It is well recognized that murine double minute gene 2 (MDM2) plays a critical role in cell proliferation and inflammatory processes during tumorigenesis. It is also reported that MDM2 is expressed in glomeruli and involved in podocyte injury. However, whether MDM2 is implicated in renal fibrosis remains unclear. Here we investigated the role of MDM2 in tubulointerstitial fibrosis (TIF). By immunohistochemical staining and Western blotting we confirmed that MDM2 is upregulated in the tubulointerstitial compartment in patients with TIF and unilateral urethral obstruction (UUO) mice, which mainly originates from myofibroblasts. Consistently, in vitro MDM2 is increased in TGF-β1-treated fibroblasts, one of the major sources of collagen-producing myofibroblasts during TIF, along with fibroblast activation. Importantly, genetic deletion of MDM2 significantly attenuates fibroblast activation. We then analyzed the possible downstream signaling of MDM2 during fibroblast activation. p53-dependent pathway is the classic downstream signaling of MDM2, and Nutlin-3 is a small molecular inhibitor of MDM2-p53 interaction. To our surprise, Nutlin-3 could not ameliorate fibroblast activation in vitro and TIF in UUO mice. However, we found that Notch1 signaling is attenuated during fibroblast activation, which could be markedly rescued by MDM2 knockdown. Overexpression of intracellular domain of Notch1 (NICD) by plasmid could obviously minimize fibroblast activation induced by TGF-β1. In addition, the degradation of NICD is strikingly suppressed by PYR-41, an inhibitor of ubiquitin-activating enzyme E1, and proteasome inhibitor MG132. Taken together, our findings provide the first evidence that MDM2 is involved in fibroblast activation and TIF, which associates with Notch1 ubiquitination and proteasome degradation.


2018 ◽  
Vol 46 (2) ◽  
pp. 451-460 ◽  
Author(s):  
Fang-Fang He ◽  
Ren-Yu You ◽  
Chen Ye ◽  
Chun-Tao Lei ◽  
Hui Tang ◽  
...  

Background/Aims: Renal tubular epithelial cells and fibroblasts are the main sources of myofibroblasts, and these cells produce the extracellular matrix during tubulointerstitial fibrosis (TIF). Histone deacetylases (HDAC) inhibitors exert an antifibrogenic effect in the skin, liver and lung. Sirtuin 2 (SIRT2), which is a class III HDAC, is an important member of NAD+-dependent protein deacetylases. The current study evaluated the role of SIRT2 in renal TIF. Methods: Immunohistochemical staining and Western blot were performed to evaluate SIRT2 expression in TIF patients and unilateral urethral obstruction (UUO) mice. Western blot was used to assess the protein levels of SIRT2, α-SMA, collagen III, fibronectin, and MDM2 in tubular epithelial cells and fibroblasts. The specific inhibitor AGK2 was used to inhibit SIRT2 activity, and targeted siRNA was used to suppress SIRT2 expression. Results: SIRT2 expression increased in the tubulointerstitium of TIF patients and UUO mice. SIRT2 inhibition ameliorated TIF in UUO mice. SIRT2 expression in tubular cells was unchanged after exposure to TGF-β1. The SIRT2-specifc inhibitor AGK2 did not attenuate TGF-β1-induced tubular epithelial-mesenchymal transition. However, SIRT2 was upregulated in fibroblasts, and fibroblasts were activated after TGF-β1 treatment. Genetic knockdown and chemical inhibition of SIRT2 attenuated TGF-β1-induced fibroblast activation. We also explored the downstream signaling of SIRT2 during fibroblast activation. Genetic knockdown and chemical inhibition of SIRT2 suppressed TGF-β1-induced increase in MDM2 expression, and inhibition of the MDM2-p53 interaction using Nutlin-3 did not suppress SIRT2 upregulation. Conclusion: Our results suggest that SIRT2 participates in the activation of fibroblasts and TIF, which is mediated via regulation of the MDM2 pathway, and the downregulation of SIRT2 may be a therapeutic strategy for renal fibrosis.


Author(s):  
Ting Xie ◽  
Zunen Xia ◽  
Wei Wang ◽  
Xiangjun Zhou ◽  
Changgeng Xu

Tubulointerstitial fibrosis is both a pathological manifestation of chronic kidney disease and a driving force for the progression of kidney disease. A previous study has shown that bone morphogenetic protein-binding endothelial cell precursor-derived regulator (BMPER) is involved in lung fibrogenesis. However, the role of BMPER in renal fibrosis remains unknown. In the present study, the expression of BMPER was examined by real-time PCR, Western blot and immunohistochemical staining. The in vitro effects of BMPER on tubular dedifferentiation and fibroblast activation were analyzed in cultured HK-2 and NRK-49F cells. The in vivo effects of BMPER were dissected in unilateral ureteral obstruction (UUO) mice by delivery of BMPER gene via systemic administration of plasmid vector. We reported that the expression of BMPER decreased in the kidneys of UUO mice and HK-2 cells. TGF-β1 increased inhibitor of differentiation-1 (Id-1) and induced epithelial mesenchymal transition in HK-2 cells, and knockdown of BMPER aggravated Id-1 up-regulation, E-cadherin loss, and tubular dedifferentiation. On the contrary, exogenous BMPER inhibited Id-1 up-regulation, prevented E-cadherin loss and tubular dedifferentiation after TGF-β1 exposure. In addition, exogenous BMPER suppressed fibroblast activation by hindering Erk1/2 phosphorylation. Knockdown of low-density lipoprotein receptor-related protein 1 abolished the inhibitory effect of BMPER on Erk1/2 phosphorylation and fibroblast activation. Moreover, delivery of BMPER gene improved renal tubular damage and interstitial fibrosis in UUO mice. Therefore, BMPER inhibits TGF-β1-induced tubular dedifferentiation and fibroblast activation and may hold therapeutic potential for tubulointerstitial fibrosis.


2016 ◽  
Vol 311 (1) ◽  
pp. F207-F216 ◽  
Author(s):  
Hui Tang ◽  
Hua Su ◽  
Di Fan ◽  
Chen Ye ◽  
Chun-Tao Lei ◽  
...  

MAD2B, an anaphase-promoting complex/cyclosome (APC/C) inhibitor and a small subunit of DNA polymerase ζ, is indispensible for mitotic checkpoint control and DNA repair. Previously, we established that MAD2B is expressed in glomerular and tubulointerstitial compartments and participates in high glucose-induced podocyte injury. However, its role in other renal diseases remains elusive. In the present study, we aim to illustrate the potential role of MAD2B in the pathogenesis of renal fibrosis. By immunofluorescence and Western blotting, we found MAD2B expression is obviously increased in tubulointerstitial fibrosis (TIF) patients and unilateral ureteral obstruction (UUO) mice. It is widely accepted that resident fibroblasts are the major source of collagen-producing myofibroblasts during TIF. Therefore, we evaluated the level of MAD2B in fibroblasts (NRK-49F) exposed to transforming growth factor (TGF)-β1 by immunoblotting and revealed that MAD2B is upregulated in a time-dependent manner. Intriguingly, SnoN, a transcriptional repressor of the TGF-β1/Smad signaling pathway, is decreased in TGF-β1-treated fibroblasts as well as the kidney cortex from TIF patients and UUO mice. Either in vitro or in vivo, local genetic depletion of MAD2B by lentiviral transfection could preserve SnoN abundance and suppress Smad3 phosphorylation, which finally dampens fibroblast activation, ECM accumulation, and alleviates the severity of TIF. However, the ubiquitin ligase APC/C is not involved in the MAD2B-mediated SnoN decline, although this process is ubiquitination dependent. In conclusion, our observation proposes that besides cell cycle management, MAD2B has a profibrotic role during fibroblast activation and TIF by suppressing SnoN expression. Targeting the MAD2B-SnoN pathway is a promising intervention for TIF.


2020 ◽  
Vol 21 (11) ◽  
pp. 1107-1118
Author(s):  
Ningning Li ◽  
Zhan Wang ◽  
Tao Sun ◽  
Yanfei Lei ◽  
Xianghua Liu ◽  
...  

Objective: Renal fibrosis is a common pathway leading to the progression of chronic kidney disease. Activated fibroblasts contribute remarkably to the development of renal fibrosis. Although apigenin has been demonstrated to play a protective role from fibrotic diseases, its pharmacological effect on renal fibroblast activation remains largely unknown. Materials and Methods: Here, we examined the functional role of apigenin in the activation of renal fibroblasts response to transforming growth factor (TGF)-β1 and its potential mechanisms. Cultured renal fibroblasts (NRK-49F) were exposed to apigenin (1, 5, 10 and 20 μM), followed by the stimulation of TGF-β1 (2 ng/mL) for 24 h. The markers of fibroblast activation were determined. In order to confirm the anti-fibrosis effect of apigenin, the expression of fibrosis-associated genes in renal fibroblasts was assessed. As a consequence, apigenin alleviated fibroblast proliferation and fibroblastmyofibroblast differentiation induced by TGF-β1. Result: Notably, apigenin significantly inhibited the fibrosis-associated genes expression in renal fibroblasts. Moreover, apigenin treatment significantly increased the phosphorylation of AMP-activated protein kinase (AMPK). Apigenin treatment also obviously reduced TGF-β1 induced phosphorylation of ERK1/2 but not Smad2/3, p38 and JNK MAPK in renal fibroblasts. Conclusion: In a summary, these results indicate that apigenin inhibits renal fibroblast proliferation, differentiation and function by AMPK activation and reduced ERK1/2 phosphorylation, suggesting it could be an attractive therapeutic potential for the treatment of renal fibrosis.


2021 ◽  
Vol 14 (7) ◽  
pp. 608
Author(s):  
Mohamed M. El-Kady ◽  
Reham A. Naggar ◽  
Maha Guimei ◽  
Iman M. Talaat ◽  
Olfat G. Shaker ◽  
...  

Diabetic kidney disease (DKD) is still one of the unresolved major complications of diabetes mellitus, which leads ultimately to end-stage renal disease in both type 1 and type 2 diabetes patients. Available drugs that suppress the renin–angiotensin system have partially minimized the disease impact. Yet, there is an unmet need for new therapeutic interventions to protect the kidneys of diabetic patients. In DN, glomerular sclerosis and tubulointerstitial fibrosis are mediated through several pathways, of which JAK/STAT is a key one. The current study explored the potential renoprotective effect of the JAK1/JAK2 inhibitor ruxolitinib (at doses of 0.44, 2.2, and 4.4 mg·kg−1) compared to that of enalapril at a dose of 10 mg·kg−1, in a rat model of streptozotocin-induced diabetes mellitus over 8 weeks. The effect of ruxolitinib was assessed by determining urinary albumin/creatinine ratio, serum level of cystatin, and levels of TGF-β1, NF-κB, and TNF-α in renal tissue homogenates by biochemical assays, the glomerular sclerosis and tubulointerstitial fibrosis scores by histological analysis, and fibronectin, TGF-β1, and Vimentin levels by immunohistochemical staining with the respective antibodies. Our results revealed a significant early favorable effect of a two-week ruxolitinib treatment on the renal function, supported by a decline in the proinflammatory biomarkers of DKD. This pre-clinical study suggests that the renoprotective effect of ruxolitinib in the long term should be investigated in animals, as this drug may prove to be a potential option for the treatment of diabetic kidney disease.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Holly E Mewhort ◽  
Brodie D Lipon ◽  
Daniyil A Svystonyuk ◽  
David G Guzzardi ◽  
Paul W Fedak

BACKGROUND: Following myocardial infarction (MI), activated cardiac myofibroblasts facilitate extracellular matrix (ECM) remodeling to prevent mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity, however, the mechanisms are unclear. In this study, we explored the effects of peripheral blood monocytes on human cardiac fibroblast activation in a 3D ECM microenvironment. METHODS/RESULTS: Human cardiac fibroblasts isolated from surgical human heart biopsies were seeded into 3D collagen matrices. Peripheral blood monocytes isolated from healthy human donors were co-cultured with fibroblasts. Monocytes increased fibroblast activation measured by collagen ECM contraction (17.9±11.1% increase; p<0.01) and resulted in local ECM remodeling observed by confocal microscopy. Under co-culture conditions that prevent cell-cell contact but allow interaction via paracrine factors, monocytes had minimal effects on fibroblast activation (6.4±7.0 vs.17.9±11.1% increase, respectively; p<0.01). Multiplex analysis of the co-culture media revealed an increase in the paracrine factors Transforming Growth Factor-beta 1 (TGF-β1) and Matrix Metalloproteinase 9 when monocytes and fibroblasts were cultured under cell-cell contact conditions (162.2±11.7pg/mL and 17.5±0.5ng/mL, respectively, vs. 21.8±5.7pg/mL and 4.9 ±0.4ng/mL; p<0.001). TGF-β1 blockade abolished monocyte induced cardiac fibroblast activation, as did β1-integrin. These data suggest direct cell-cell interaction between monocytes and cardiac fibroblasts through β1-integrin results in TGF-β1 release facilitating fibroblast activation and matrix remodeling. CONCLUSION: For the first time, we demonstrate that peripheral blood monocytes stimulate human cardiac fibroblast activation through a mechanism involving TGF-β1 release as a consequence of direct cell-cell interaction through β1-integrin. These data implicate inflammation as a driver of cardiac fibrosis post-MI, highlighting potential novel therapeutic targets for the treatment of ischemic HF.


2020 ◽  
Author(s):  
Huajun Tang ◽  
Peiyue Zhang ◽  
Lianlin Zeng ◽  
Yu Zhao ◽  
Libo Xie ◽  
...  

Abstract Background: Tubulointerstitial fibrosis (TIF) is one of the main pathological features of various progressive renal damages and chronic kidney diseases. Mesenchymal stromal cells (MSCs) have been verified with significant improvement in the therapy of fibrosis diseases, but the mechanism is still unclear. We attempted to explore the new mechanism and therapeutic target of MSCs against renal fibrosis based on renal proteomics.Methods: TIF model was induced by adenine gavage. Bone marrow derived MSCs was injected by tail vein after modeling. Fibrosis biomarkers or extracellular matrix proteins and histopathological change were assessed by Masson staining, Sirius red staining, immunohistochemistry, and western blot. Renal proteomics was analyzed using iTRAQ-based mass spectrometry.Results: MSCs treatment clearly decreased the expression of α-SMA, collagen type I, II, III, TGF-β1, p-Smad2/3, IL-6, IL-1β, and TNFα compared with model rats, while p38 MAPK increased. 6,213 proteins were identified, but only 40 proteins exhibited significant differences (30 upregulated, 10 downregulated) compared MSCs group with the model group. Bioinformatics analysis revealed that these proteins play important roles in the proliferation, inflammatory and immune responses, apoptosis, phagosome, etc. According to literatures and bioinformatics analysis, the most markedly downregulated protein, galectin3, was further assessed by quantitative PCR and western blot in renal tissues. Galectin3 levels were downregulated in adenine-induced renal tissues and TGF-β1 induced tubular epithelial cells and interstitial fibroblasts in consistent with iTRAQ after MSCs treatment.Conclusion: The founds suggest that galectin3 maybe involves in the antifibrotic mechanisms of MSCs therapy for tubulointerstitial fibrosis as well as a possible therapeutic target.


2021 ◽  
Vol 19 (4) ◽  
pp. 508-513
Author(s):  
Jinhao Wu ◽  
Chao Huang ◽  
Gang Kan ◽  
Hanyu Xiao ◽  
Xiaoping Zhang ◽  
...  

Obstructive nephropathy often leads to renal tubulointerstitial fibrosis. Understanding of the pathogenesis of renal tubulointerstitial fibrosis caused by obstructive nephropathy is crucial to the development of effective therapeutic drugs to improve the prognosis of the patients. Silymarin, a polyphenolic flavonoid extracted from plants, has been shown to exhibit antiinflammatory and antioxidant effects ameliorating liver and kidney damage. However, the effect of silymarin on renal fibrosis in obstructive nephropathy remains to be explored. In this study, we found silymarin improved interstitial fibrosis and apoptosis induced by TGF-β1 and ameliorated oxidative damage. Our data further confirmed that silymarin regulates the TGF-β1/ Smad3 signaling pathway, and therefore improves renal tubular interstitial fibrosis caused by obstructive nephropathy.


Sign in / Sign up

Export Citation Format

Share Document